Displaying all 3 publications

Abstract:
Sort:
  1. Athani A, Ghazali NNN, Badruddin IA, Kamangar S, Anqi AE, Algahtani A
    Biomed Mater Eng, 2022;33(1):13-30.
    PMID: 34366314 DOI: 10.3233/BME-201171
    BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease.

    OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters.

    METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation.

    RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.

  2. Ullah A, Khan AS, Sarker MR, Iqbal MJ, Khan HU, Tirth V, et al.
    ACS Omega, 2023 Apr 04;8(13):12372-12378.
    PMID: 37033827 DOI: 10.1021/acsomega.3c00128
    The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 - x)[0.90(Bi0.5Na0.5)TiO3 - 0.10SrTiO3] - xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (T s) for sufficient densification was 1160 °C. However, T s was reduced to 1090-1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (T m) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.
  3. Ullah K, Khan SA, Zaman A, Sarker MR, Ali A, Tirth V, et al.
    ACS Omega, 2023 Aug 22;8(33):29959-29965.
    PMID: 37636967 DOI: 10.1021/acsomega.3c00541
    Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links