Displaying publications 1 - 20 of 21 in total

  1. Burham N, Hamzah AA, Majlis BY
    Biomed Mater Eng, 2014;24(6):2203-9.
    PMID: 25226919 DOI: 10.3233/BME-141032
    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
  2. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
  3. Lee NK, Fong PK, Abdullah MT
    Biomed Mater Eng, 2014;24(6):3807-14.
    PMID: 25227097 DOI: 10.3233/BME-141210
    Using Genetic Algorithm, this paper presents a modelling method to generate novel logical-based features from DNA sequences enriched with H3K4mel histone signatures. Current histone signature is mostly represented using k-mers content features incapable of representing all the possible complex interactions of various DNA segments. The main contributions are, among others: (a) demonstrating that there are complex interactions among sequence segments in the histone regions; (b) developing a parse tree representation of the logical complex features. The proposed novel feature is compared to the k-mers content features using datasets from the mouse (mm9) genome. Evaluation results show that the new feature improves the prediction performance as shown by f-measure for all datasets tested. Also, it is discovered that tree-based features generated from a single chromosome can be generalized to predict histone marks in other chromosomes not used in the training. These findings have a great impact on feature design considerations for histone signatures as well as other classifier design features.
  4. Chew KM, Seman N, Sudirman R, Yong CY
    Biomed Mater Eng, 2014;24(6):2161-7.
    PMID: 25226914 DOI: 10.3233/BME-141027
    The development of human-like brain phantom is important for data acquisition in microwave imaging. The characteristics of the phantom should be based on the real human body dielectric properties such as relative permittivity. The development of phantom includes the greymatter and whitematter regions, each with a relative permittivity of 38 and 28 respectively at 10 GHz frequency. Results were compared with the value obtained from the standard library of Computer Simulation Technology (CST) simulation application and the existing research by Fernandez and Gabriel. Our experimental results show a positive outcome, in which the proposed mixture was adequate to represent real human brain for data acquisition.
  5. Masrie M, Majlis BY, Yunas J
    Biomed Mater Eng, 2014;24(6):1951-8.
    PMID: 25226891 DOI: 10.3233/BME-141004
    This paper discusses the process technology to fabricate multilayer-Polydimethylsiloxane (PDMS) based microfluidic device for bio-particles concentration detection in Lab-on-chip system. The micro chamber and the fluidic channel were fabricated using standard photolithography and soft lithography process. Conventional method by pouring PDMS on a silicon wafer and peeling after curing in soft lithography produces unspecific layer thickness. In this work, a multilayer-PDMS method is proposed to produce a layer with specific and fixed thickness micron size after bonding that act as an optimum light path length for optimum light detection. This multilayer with precise thickness is required since the microfluidic is integrated with optical transducer. Another significant advantage of this method is to provide excellent bonding between multilayer-PDMS layer and biocompatible microfluidic channel. The detail fabrication process were illustrated through scanning electron microscopy (SEM) and discussed in this work. The optical signal responses obtained from the multilayer-PDMS microfluidic channel with integrated optical transducer were compared with those obtained with the microfluidic channel from a conventional method. As a result, both optical signal responses did not show significant differences in terms of dispersion of light propagation for both media.
  6. Yin LK, Rajeswari M
    Biomed Mater Eng, 2014;24(6):3333-41.
    PMID: 25227043 DOI: 10.3233/BME-141156
    To segment an image using the random walks algorithm; users are often required to initialize the approximate locations of the objects and background in the image. Due to its segmenting model that is mainly reflected by the relationship among the neighborhood pixels and its boundary conditions, random walks algorithm has made itself sensitive to the inputs of the seeds. Instead of considering the relationship between the neighborhood pixels solely, an attempt has been made to modify the weighting function that accounts for the intensity changes between the neighborhood nodes. Local affiliation within the defined neighborhood region of the two nodes is taken into consideration by incorporating an extra penalty term into the weighting function. Besides that, to better segment images, particularly medical images with texture features, GLCM variance is incorporated into the weighting function through kernel density estimation (KDE). The probability density of each pixel belonging to the initialized seeds is estimated and integrated into the weighting function. To test the performance of the proposed weighting model, several medical images that mainly made up of 174-brain tumor images are experimented. These experiments establish that the proposed method produces better segmentation results than the original random walks.
  7. Gan HS, Tan TS, Wong LX, Tham WK, Sayuti KA, Abdul Karim AH, et al.
    Biomed Mater Eng, 2014;24(6):3145-57.
    PMID: 25227024 DOI: 10.3233/BME-141137
    In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.
  8. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
  9. Chew KM, Sudirman R, Seman N, Yong CY
    Biomed Mater Eng, 2014;24(1):199-207.
    PMID: 24211899 DOI: 10.3233/BME-130800
    The study was conducted based on two objectives as framework. The first objective is to determine the point of microwave signal reflection while penetrating into the simulation models and, the second objective is to analyze the reflection pattern when the signal penetrate into the layers with different relative permittivity, εr. Thus, several microwave models were developed to make a close proximity of the in vivo human brain. The study proposed two different layers on two different characteristics models. The radii on the second layer and the corresponding antenna positions are the factors for both models. The radii for model 1 is 60 mm with an antenna position of 10 mm away, in contrast, model 2 is 10 mm larger in size with a closely adapted antenna without any gap. The layers of the models were developed with different combination of materials such as Oil, Sandy Soil, Brain, Glycerin and Water. Results show the combination of Glycerin + Brain and Brain + Sandy Soil are the best proximity of the in vivo human brain grey and white matter. The results could benefit subsequent studies for further enhancement and development of the models.
  10. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
  11. Abd Samad H, Jaafar M, Othman R, Kawashita M, Abdul Razak NH
    Biomed Mater Eng, 2011;21(4):247-58.
    PMID: 22182792 DOI: 10.3233/BME-2011-0673
    In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.
  12. Sulaiman NH, Ghazali MJ, Majlis BY, Yunas J, Razali M
    Biomed Mater Eng, 2015;26 Suppl 1:S103-10.
    PMID: 26405858 DOI: 10.3233/BME-151295
    The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape.
  13. Wan Abas WA
    Biomed Mater Eng, 1995;5(2):59-63.
    PMID: 7655319
    The response of human skin to "stress relaxation" tests at low loads in vitro was investigated. A number of behaviours, other than those already well established and documented, were observed. The significant behaviours are pure recovery and relaxation-recovery. Other behaviours observed are temporary stress recovery during the relaxation process, and momentary sudden non-linear drop in stress value followed by a second relaxation. The pure recovery and relaxation-recovery responses are repeatable. The latter represents the transitional response between the well-known behaviour of stress relaxation and the behaviour of stress recovery.
  14. Wan Abas WA
    Biomed Mater Eng, 1994;4(7):473-86.
    PMID: 7881331
    The response of human skin to biaxial stretch tests in vivo was investigated and compared to the response to uniaxial tension. The results obtained illustrate the nonlinear, anisotropic, and viscoelastic (time-dependent) properties of skin under biaxial stretch. Preconditioning in the load-extension response was found not to be prominent. The results also suggest that the response of skin to a biaxial stretch in vivo is qualitatively similar to that in vitro. Values of the terminal stiffness and limit strain of skin under a biaxial stretch are found.
  15. Wan Abas WA, Asseli MR
    Biomed Mater Eng, 1994;4(7):463-71.
    PMID: 7881330
    Local strains acting across an area of skin loaded uniaxially in vivo are converted to stresses using the standard elastic formulae. The stress values are compared to those obtained using the classical Bossinesq and Michell stress functions. The results indicate that these functions are capable of describing the response of the skin, both in the low load and the high load regions.
  16. Hong-Seng G, Sayuti KA, Karim AH
    Biomed Mater Eng, 2017;28(2):75-85.
    PMID: 28372262 DOI: 10.3233/BME-171658
    BACKGROUND: Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images.

    OBJECTIVES: The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method.

    METHODS: Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories.

    RESULTS: A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15).

    CONCLUSION: The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

  17. Abdul Rahman H, Khor KX, Yeong CF, Su EL, Narayanan AL
    Biomed Mater Eng, 2017;28(2):105-116.
    PMID: 28372264 DOI: 10.3233/BME-171660
    BACKGROUND: Clinical scales such as Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) are widely used to evaluate stroke patient's motor performance. However, there are several limitations with these assessment scales such as subjectivity, lack of repeatability, time-consuming and highly depend on the ability of the physiotherapy. In contrast, robot-based assessments are objective, repeatable, and could potentially reduce the assessment time. However, robot-based assessments are not as well established as conventional assessment scale and the correlation to conventional assessment scale is unclear.

    OBJECTIVE: This study was carried out to identify important parameters in designing tasks that efficiently assess hand function of stroke patients and to quantify potential benefits of robotic assessment modules to predict the conventional assessment score with iRest.

    METHODS: Twelve predictive variables were explored, relating to movement time, velocity, strategy, accuracy and smoothness from three robotic assessment modules which are Draw I, Draw Diamond and Draw Circle. Regression models using up to four predictors were developed to describe the MAS.

    RESULTS: Results show that the time given should be not too long and it would affect the trajectory error. Besides, result also shows that it is possible to use iRest in predicting MAS score.

    CONCLUSION: There is a potential of using iRest, a non-motorized device in predicting MAS score.

  18. Ahamad NA, Kamangar S, Badruddin IA
    Biomed Mater Eng, 2018;29(3):319-332.
    PMID: 29578467 DOI: 10.3233/BME-181734
    The current study investigates the curvature effect due to various angles of curvature on the blood flow in human artery. The stenosis is considered to have three sizes 70%, 80% and 90% blockage before the curve section of artery. Numerical study of four different angle of curvature was considered to understand the flow behavior of artery having various curvatures, on the hemodynamics factors that includes drop in arterial pressure, flow velocity as well as wall shear stress. It was found that, the augmentation of the flow resistance due to the curvature increases in presence of stenosis. It was also noted that the wall shear is higher at the outer wall as compared to the inside wall in four models considered. Results showed that both the curvature of artery and size of the stenosis have significant impact. These two factors should be considered by cardiologist to assess the complexity of stenosis.
  19. Kamangar S, Badruddin IA, Ameer Ahamad N, Soudagar MEM, Govindaraju K, Nik-Ghazali N, et al.
    Biomed Mater Eng, 2017;28(3):257-266.
    PMID: 28527189 DOI: 10.3233/BME-171672
    The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.
  20. Assadian M, Jafari H, Ghaffari Shahri SM, Idris MH, Almasi D
    Biomed Mater Eng, 2016 Aug 12;27(2-3):287-303.
    PMID: 27567782 DOI: 10.3233/BME-161585
    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links