In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.