Displaying all 3 publications

Abstract:
Sort:
  1. Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S
    Physiol Mol Biol Plants, 2014 Oct;20(4):411-23.
    PMID: 25320465 DOI: 10.1007/s12298-014-0250-6
    The present investigation was carried out to evaluate 33 rice landrace genotypes for assessment of their salt tolerance at seedling stage. Growth parameters like root length, shoot length and plant biomass were measured after 12 days of exposure to six different levels of saline solution (with electrical conductivity of 4, 6, 8, 10, 12 or 14 dS m (-1)). Genotypes showing significant interaction and differential response towards salinity were assessed at molecular level using 11 simple sequence repeats (SSR) markers, linked with salt tolerance quantitative trait loci. Shoot length, root length and plant biomass at seedling stage decreased with increasing salinity. However, relative salt tolerance in terms of these three parameters varied among genotypes. Out of the 11 SSR markers RM8094, RM336 and RM8046, the most competent descriptors to screen the salt tolerant genotypes with higher polymorphic information content coupled with higher marker index value, significantly distinguished the salt tolerant genotypes. Combining morphological and molecular assessment, four lanraces viz. Gheus, Ghunsi, Kuthiahara and Sholerpona were considered as true salt tolerant genotypes which may contribute in greater way in the development of salt tolerant genotypes in rice.
  2. Gantait S, Sinniah UR, Ali MN, Sahu NC
    Curr Protein Pept Sci, 2015;16(5):406-12.
    PMID: 25824386
    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.
  3. Yeasmin L, Ali MN, Gantait S, Chakraborty S
    3 Biotech, 2015 Feb;5(1):1-11.
    PMID: 28324361 DOI: 10.1007/s13205-014-0201-5
    Genetic diversity represents the heritable variation both within and among populations of organisms, and in the context of this paper, among bamboo species. Bamboo is an economically important member of the grass family Poaceae, under the subfamily Bambusoideae. India has the second largest bamboo reserve in Asia after China. It is commonly known as "poor man's timber", keeping in mind the variety of its end use from cradle to coffin. There is a wide genetic diversity of bamboo around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, the identification, characterization and documentation of genetic diversity of bamboo are essential for this purpose. During recent years, multiple endeavors have been undertaken for characterization of bamboo species with the aid of molecular markers for sustainable utilization of genetic diversity, its conservation and future studies. Genetic diversity assessments among the identified bamboo species, carried out based on the DNA fingerprinting profiles, either independently or in combination with morphological traits by several researchers, are documented in the present review. This review will pave the way to prepare the database of prevalent bamboo species based on their molecular characterization.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links