Displaying all 2 publications

Abstract:
Sort:
  1. Qaiyum S, Aziz I, Hasan MH, Khan AI, Almalawi A
    Sensors (Basel), 2020 Jun 05;20(11).
    PMID: 32517018 DOI: 10.3390/s20113210
    Data Streams create new challenges for fuzzy clustering algorithms, specifically Interval Type-2 Fuzzy C-Means (IT2FCM). One problem associated with IT2FCM is that it tends to be sensitive to initialization conditions and therefore, fails to return global optima. This problem has been addressed by optimizing IT2FCM using Ant Colony Optimization approach. However, IT2FCM-ACO obtain clusters for the whole dataset which is not suitable for clustering large streaming datasets that may be coming continuously and evolves with time. Thus, the clusters generated will also evolve with time. Additionally, the incoming data may not be available in memory all at once because of its size. Therefore, to encounter the challenges of a large data stream environment we propose improvising IT2FCM-ACO to generate clusters incrementally. The proposed algorithm produces clusters by determining appropriate cluster centers on a certain percentage of available datasets and then the obtained cluster centroids are combined with new incoming data points to generate another set of cluster centers. The process continues until all the data are scanned. The previous data points are released from memory which reduces time and space complexity. Thus, the proposed incremental method produces data partitions comparable to IT2FCM-ACO. The performance of the proposed method is evaluated on large real-life datasets. The results obtained from several fuzzy cluster validity index measures show the enhanced performance of the proposed method over other clustering algorithms. The proposed algorithm also improves upon the run time and produces excellent speed-ups for all datasets.
  2. Almalawi A, Alsolami F, Khan AI, Alkhathlan A, Fahad A, Irshad K, et al.
    Environ Res, 2022 Apr 15;206:112576.
    PMID: 34921824 DOI: 10.1016/j.envres.2021.112576
    Air pollution is the existence of atmospheric chemicals damaging the health of human beings and other living organisms or damaging the environment or resources. Rarely any common contaminants are smog, nicotine, mold, yeast, biogas, or carbon dioxide. The paper will primarily observe, visualize and anticipate pollution levels. In particular, three algorithms of Artificial Intelligence were used to create good forecasting models and a predictive AQI model for 4 distinct gases: carbon dioxide, sulphur dioxide, nitrogen dioxide, and atmospheric particulate matter. Thus, in this paper, the Air Qualification Index is developed utilizing Linear Regression, Support Vector Regression, and the Gradient Boosted Decision Tree GBDT Ensembles model over the next 5 h and analyzes air qualities using various sensors. The hypothesized artificial intelligence models are evaluated to the Root Mean Squares Error, Mean Squared Error and Mean absolute error, depending upon the performance measurements and a lower error value model is chosen. Based on the algorithm of the Artificial Intelligent System, the level of 5 air pollutants like CO2, SO2, NO2, PM 2.5 and PM10 can be predicted immediately by integrating the observations with errors. It may be used to detect air quality from distance in large cities and can assist lower the degree of environmental pollution.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links