The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.
Kidney tumor (KT) is one of the diseases that have affected our society and is the seventh most common tumor in both men and women worldwide. The early detection of KT has significant benefits in reducing death rates, producing preventive measures that reduce effects, and overcoming the tumor. Compared to the tedious and time-consuming traditional diagnosis, automatic detection algorithms of deep learning (DL) can save diagnosis time, improve test accuracy, reduce costs, and reduce the radiologist's workload. In this paper, we present detection models for diagnosing the presence of KTs in computed tomography (CT) scans. Toward detecting and classifying KT, we proposed 2D-CNN models; three models are concerning KT detection such as a 2D convolutional neural network with six layers (CNN-6), a ResNet50 with 50 layers, and a VGG16 with 16 layers. The last model is for KT classification as a 2D convolutional neural network with four layers (CNN-4). In addition, a novel dataset from the King Abdullah University Hospital (KAUH) has been collected that consists of 8,400 images of 120 adult patients who have performed CT scans for suspected kidney masses. The dataset was divided into 80% for the training set and 20% for the testing set. The accuracy results for the detection models of 2D CNN-6 and ResNet50 reached 97%, 96%, and 60%, respectively. At the same time, the accuracy results for the classification model of the 2D CNN-4 reached 92%. Our novel models achieved promising results; they enhance the diagnosis of patient conditions with high accuracy, reducing radiologist's workload and providing them with a tool that can automatically assess the condition of the kidneys, reducing the risk of misdiagnosis. Furthermore, increasing the quality of healthcare service and early detection can change the disease's track and preserve the patient's life.