METHODS: In this paper, we analyze four wide-spread deep learning models designed for the segmentation of three retinal fluids outputting dense predictions in the RETOUCH challenge data. We aim to demonstrate how a patch-based approach could push the performance for each method. Besides, we also evaluate the methods using the OPTIMA challenge dataset for generalizing network performance. The analysis is driven into two sections: the comparison between the four approaches and the significance of patching the images.
RESULTS: The performance of networks trained on the RETOUCH dataset is higher than human performance. The analysis further generalized the performance of the best network obtained by fine-tuning it and achieved a mean Dice similarity coefficient (DSC) of 0.85. Out of the three types of fluids, intraretinal fluid (IRF) is more recognized, and the highest DSC value of 0.922 is achieved using Spectralis dataset. Additionally, the highest average DSC score is 0.84, which is achieved by PaDeeplabv3+ model using Cirrus dataset.
CONCLUSIONS: The proposed method segments the three fluids in the retina with high DSC value. Fine-tuning the networks trained on the RETOUCH dataset makes the network perform better and faster than training from scratch. Enriching the networks with inputting a variety of shapes by extracting patches helped to segment the fluids better than using a full image.
METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.
RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.