Displaying all 2 publications

Abstract:
Sort:
  1. Almalki ASA, Alhadhrami A, Alsanie WF, Kamarudin SK, Pugazhendhi A
    Environ Res, 2024 Apr 01;246:118060.
    PMID: 38157966 DOI: 10.1016/j.envres.2023.118060
    In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.
  2. Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, et al.
    Materials (Basel), 2021 Oct 22;14(21).
    PMID: 34771817 DOI: 10.3390/ma14216291
    Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved efficacy. Due to numerous beneficial properties associated with nanocarriers in the drug delivery system, rivastigmine nanoparticles were fabricated to be administer through the intranasal route. During the development of the nanoparticles, preliminary optimization of processing and formulation parameters was done by the design of an experimental approach. The drug-polymer ratio, stirrer speed, and crosslinking time were fixed as independent variables, to analyze the effect on the entrapment efficiency (% EE) and in vitro drug release of the drug. The formulation (D8) obtained from 23 full factorial designs was further coated using Eudragit EPO to extend the release pattern of the entrapped drug. Furthermore, the 1:1 ratio of core to polymer depicted spherical particle size of ~175 nm, % EE of 64.83%, 97.59% cumulative drug release, and higher flux (40.39 ± 3.52 µg.h/cm2). Finally, the intranasal ciliotoxicity study on sheep nasal mucosa revealed that the exposure of developed nanoparticles was similar to the negative control group, while destruction of normal architecture was noticed in the positive control test group. Overall, from the in vitro results it could be summarized that the optimization of nanoparticles' formulation of rivastigmine for intranasal application would be retained at the application site for a prolonged duration to release the entrapped drug without producing any local toxicity at the mucosal region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links