Human respiratory syncytial virus is the most common cause of bronchiolitis and other respiratory infections in infants and the elderly worldwide. We have developed two new oral vaccines using Salmonella typhi TY21a to carry and express the immunogenic epitopes of RSV fusion (F) and attachment (G) glycoproteins on its surface, separately. To evaluate the efficacy of the designed vaccines, BALB/c mice were orally immunized and then infected with RSV. Immune response analyses showed that cellmediated, mucosal and humoral immunity in the vaccinated mice were significantly enhanced compared to the control group. Both vaccines generated a balanced Th1/Th2 immune response which is crucial for efficiency of vaccines against RSV. Furthermore, histopathological examination proved that these vaccines were safe as they did not cause any Th2-associated adverse effects in the lungs of RSV-infected mice. The findings of this research suggest that Salmonella-F and Salmonella-G vaccine candidates may have strong potential to prevent RSV infection.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML). Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1) delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.
Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated-dextran-spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.
Human bocavirus (HBoV) is a newly discovered parvovirus associated with respiratory disease in children. There are many reports worldwide on the endemicity of this virus. Since it is relatively new, detection in clinical laboratories is not routinely performed. We describe the first detection of HBoV in Malaysia in a 13-month-old boy with pneumonia and underlying asthma. The infective agent was confirmed by molecular methods.