Displaying all 3 publications

Abstract:
Sort:
  1. Namphonsane A, Suwannachat P, Chia CH, Wongsagonsup R, Smith SM, Amornsakchai T
    Membranes (Basel), 2023 Apr 24;13(5).
    PMID: 37233519 DOI: 10.3390/membranes13050458
    In this study, biodegradable starch film was developed from pineapple stem waste as a substitute for non-biodegradable petroleum-based films for single-use applications where strength is not too demanding. High amylose starch from a pineapple stem was used as the matrix. Glycerol and citric acid were used as additives to adjust the ductility of the material. Glycerol content was fixed at 25% while that of citric acid varied from 0 to 15% by weight of starch. Films with a wide range of mechanical properties can be prepared. As more citric acid is added, the film becomes softer and weaker, and has greater elongation at the break. Properties range from a strength of about 21.5 MPa and 2.9% elongation to a strength of about 6.8 MPa and 35.7% elongation. An X-ray diffraction study showed that the films were semi-crystalline. The films were also found to be water-resistant and can be heat-sealed. An example of a single-use package was demonstrated. A soil burial test confirmed that the material was biodegradable and completely disintegrated into sizes smaller than 1 mm within one month.
  2. Thongphang C, Namphonsane A, Thanawan S, Chia CH, Wongsagonsup R, Smith SM, et al.
    Polymers (Basel), 2023 May 19;15(10).
    PMID: 37242963 DOI: 10.3390/polym15102388
    Plastic waste poses a significant challenge for the environment, particularly smaller plastic products that are often difficult to recycle or collect. In this study, we developed a fully biodegradable composite material from pineapple field waste that is suitable for small-sized plastic products that are difficult to recycle, such as bread clips. We utilized starch from waste pineapple stems, which is high in amylose content, as the matrix, and added glycerol and calcium carbonate as the plasticizer and filler, respectively, to improve the material's moldability and hardness. We varied the amounts of glycerol (20-50% by weight) and calcium carbonate (0-30 wt.%) to produce composite samples with a wide range of mechanical properties. The tensile moduli were in the range of 45-1100 MPa, with tensile strengths of 2-17 MPa and an elongation at break of 10-50%. The resulting materials exhibited good water resistance and had lower water absorption (~30-60%) than other types of starch-based materials. Soil burial tests showed that the material completely disintegrated into particles smaller than 1 mm within 14 days. We also created a bread clip prototype to test the material's ability to hold a filled bag tightly. The obtained results demonstrate the potential of using pineapple stem starch as a sustainable alternative to petroleum-based and biobased synthetic materials in small-sized plastic products while promoting a circular bioeconomy.
  3. Bumrungnok K, Threepopnatkul P, Amornsakchai T, Chia CH, Wongsagonsup R, Smith SM
    Polymers (Basel), 2023 May 29;15(11).
    PMID: 37299292 DOI: 10.3390/polym15112493
    In order to reduce our dependence on nonrenewable plastics and solve the problem of non-biodegradable plastic waste, there has been much attention paid to the development of biodegradable plastics from natural resources. Starch-based materials have been widely studied and developed for commercial production, primarily from corn and tapioca. However, the use of these starches could generate food security problems. Therefore, the use of alternative starch sources, such as agricultural waste, would be of great interest. In this work, we investigated the properties of films prepared from pineapple stem starch, which has a high amylose content. Pineapple stem starch (PSS) films and glycerol-plasticized PSS films were prepared and characterized using X-ray diffraction and water contact angle measurements. All films exhibited some degree of crystallinity, making them water-resistant. The effect of glycerol content on mechanical properties and gas (oxygen, carbon dioxide and water vapor) transmission rates was also studied. The tensile modulus and tensile strength of the films decreased with increasing glycerol content, while gas transmission rates increased. Preliminary studies showed that coatings made from PSS films could slow down the ripening process of bananas and extend their shelf life.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links