Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Björkegren S, Karimi RF, Martinelli A, Jayakumar NS, Hashim MA
    Membranes (Basel), 2015;5(2):168-79.
    PMID: 25915191 DOI: 10.3390/membranes5020168
    The extraction efficiency of hexavalent chromium, Cr(VI), from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM) technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC), to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water) does not significantly influence the extraction rate.
  2. Toh KY, Liang YY, Lau WJ, Fimbres Weihs GA
    Membranes (Basel), 2020 Oct 15;10(10).
    PMID: 33076290 DOI: 10.3390/membranes10100285
    Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales.
    Matched MeSH terms: Membranes
  3. Ahmad AL, Sugumaran J, Shoparwe NF
    Membranes (Basel), 2018 Dec 14;8(4).
    PMID: 30558199 DOI: 10.3390/membranes8040131
    In this study, the antifouling properties of polyethersulfone (PES) membranes blended with different amounts of ZnO nanoparticles and a fixed ratio of N-methyl-2-pyrrolidone (NMP)-acetone mixture as a solvent were investigated. The properties and performance of the fabricated membranes were examined in terms of hydrophilicity, porosity, pore size, surface and cross-section image using scanning electron microscopy (SEM), surface roughness using atomic force microscopy (AFM), pure water flux, and humic acid filtration. Addition of ZnO as expected was found to improve the hydrophilicity as well as to encourage pore formation. However, the agglomeration of ZnO at a higher concentration cannot be avoided even when dissolved in a mixed solvent. The presence of highly volatile acetone contributed to the tight skin layer of the membrane which shows remarkable antifouling ability with the highest flux recovery ratio and negligible irreversible fouling. ZnO NPs in acetone/NMP mixed solvent shows an improvement in flux and rejection, but, the fouling resistance was moderate compared to the pristine membrane.
  4. Goh PS, Ismail AF
    Membranes (Basel), 2021 Feb 25;11(3).
    PMID: 33668700 DOI: 10.3390/membranes11030158
    The design and synthesis of functional nanomaterials have been extensively explored over the last decade, primarily due to their exceptional physico-chemical properties [...].
  5. Kakihana Y, Jullok N, Shibuya M, Ikebe Y, Higa M
    Membranes (Basel), 2021 Feb 28;11(3).
    PMID: 33671075 DOI: 10.3390/membranes11030177
    Pressure-retarded osmosis (PRO) has recently received attention because of its ability to generate power via an osmotic pressure gradient between two solutions with different salinities: high- and low-salinity water sources. In this study, PRO performance, using the two pilot-scale PRO membrane modules with different configurations-five-inch cellulose triacetate hollow-fiber membrane module (CTA-HF) and eight-inch polyamide spiral-wound membrane modules (PA-SW)-was evaluated by changing the draw solution (DS) concentration, applied hydrostatic pressure difference, and the flow rates of DS and feed solution (FS), to obtain the optimum operating conditions in PRO configuration. The maximum power density per unit membrane area of PA-SW at 0.6 M NaCl was 1.40 W/m2 and 2.03-fold higher than that of CTA-HF, due to the higher water permeability coefficient of PA-SW. In contrast, the maximum power density per unit volume of CTA-SW at 0.6 M NaCl was 4.67 kW/m3 and 6.87-fold higher than that of PA-SW. The value of CTA-HF increased to 13.61 kW/m3 at 1.2 M NaCl and was 12.0-fold higher than that of PA-SW because of the higher packing density of CTA-HF.
    Matched MeSH terms: Membranes
  6. Anwer AH, Khan N, Umar MF, Rafatullah M, Khan MZ
    Membranes (Basel), 2021 Mar 22;11(3).
    PMID: 33810075 DOI: 10.3390/membranes11030223
    Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
  7. AbdulKadir WAFW, Ahmad AL, Boon Seng O
    Membranes (Basel), 2021 Mar 23;11(3).
    PMID: 33807017 DOI: 10.3390/membranes11030228
    The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.
  8. Chen L, Ho CD, Jen LY, Lim JW, Chen YH
    Membranes (Basel), 2020 Oct 22;10(11).
    PMID: 33105658 DOI: 10.3390/membranes10110302
    We investigated the insertion of eddy promoters into a parallel-plate gas-liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide-MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number's correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization's effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.
    Matched MeSH terms: Membranes
  9. Said N, Khoo YS, Lau WJ, Gürsoy M, Karaman M, Ting TM, et al.
    Membranes (Basel), 2020 Dec 07;10(12).
    PMID: 33297433 DOI: 10.3390/membranes10120401
    In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers-acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.
  10. Raza A, Farrukh S, Hussain A, Khan I, Othman MHD, Ahsan M
    Membranes (Basel), 2021 Mar 29;11(4).
    PMID: 33805339 DOI: 10.3390/membranes11040245
    The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas-separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical and green nature. The best position in Robeson's upper bound curve at 5 bar was obtained with the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability of 17.32 barrer and CO2/CH4 selectivity of 18.55. The membrane exhibits 98% enhancement in CO2/CH4 selectivity compared to neat membrane with only a slight reduction in CO2 permeability. The optimal membrane displays a plasticization pressure of 10.48 bar. The newly developed blended membranes show great potential for CO2 separations in the natural gas industry.
    Matched MeSH terms: Membranes
  11. Chang H, Ho CD, Chen YH, Chen L, Hsu TH, Lim JW, et al.
    Membranes (Basel), 2021 Apr 07;11(4).
    PMID: 33916991 DOI: 10.3390/membranes11040266
    Two geometric shape turbulence promoters (circular and square of same areas) of different array patterns using three-dimensional (3D) printing technology were designed for direct contact membrane distillation (DCMD) modules in the present study. The DCMD device was performed at middle temperature operation (about 45 °C to 60 °C) of hot inlet saline water associated with a constant temperature of inlet cold stream. Attempts to reduce the disadvantageous temperature polarization effect were made inserting the 3D turbulence promoters to promote both the mass and heat transfer characteristics in improving pure water productivity. The additive manufacturing 3D turbulence promoters acting as eddy promoters could not only strengthen the membrane stability by preventing vibration but also enhance the permeate flux with lessening temperature polarization effect. Therefore, the 3D turbulence promoters were individually inserted into the flow channel of the DCMD device to create vortices in the flow stream and increase turbulent intensity. The modeling equations for predicting the permeate flux in DCMD modules by inserting the manufacturing 3D turbulence promoter were investigated theoretically and experimentally. The effects of the operating conditions under various geometric shapes and array patterns of turbulence promoters on the permeate flux with hot inlet saline temperatures and flow rates as parameters were studied. The distributions of the fluid velocities were examined using computational fluid dynamics (CFD). Experimental study has demonstrated a great potential to significantly accomplish permeate flux enhancement in such new design of the DCMD system. The permeate flux enhancement for the DCMD module by inserting 3D turbulence promoters in the flow channel could provide a maximum relative increment of up to 61.7% as compared to that in the empty channel device. The temperature polarization coefficient (τtemp) was found in this study for various geometric shapes and flow patterns. A larger τtemp value (the less thermal resistance) was achieved in the countercurrent-flow operation than that in the concurrent-flow operation. An optimal design of the module with inserting turbulence promoters was also delineated when considering both permeate flux enhancement and energy utilization effectiveness.
    Matched MeSH terms: Membranes
  12. Gan JY, Chong WC, Sim LC, Koo CH, Pang YL, Mahmoudi E, et al.
    Membranes (Basel), 2020 Aug 03;10(8).
    PMID: 32756315 DOI: 10.3390/membranes10080175
    This study produced a novel polysulfone (PSF) membrane for dye removal using lemon-derived carbon quantum dots-grafted silver nanoparticles (Ag/CQDs) as membrane nanofiller. The preparation of CQDs was completed by undergoing hydrothermal treatment to carbonize the pulp-free lemon juice into CQD solution. The CQD solution was then coupled with Ag nanoparticles to form Ag/CQDs nanohybrid. The synthesized powders were characterized in terms of morphologies, functional groups and surface charges. A set of membranes was fabricated with different loadings of Ag/CQDs powder using the nonsolvent-induced phase separation (NIPS) method. The modified membranes were studied in terms of morphology, elemental composition, hydrophilicity and pore size. In addition, pure water flux, rejection test and fouling analysis of the membranes were evaluated using tartrazine dye. From the results, 0.5 wt % of Ag/CQD was identified as the optimum loading to be incorporated with the pristine PSF membrane. The modified membrane exhibited an excellent pure water permeability and dye rejection with improvements of 169% and 92%, respectively. In addition, the composite membrane also experienced lower flux decline, higher reversible fouling and lower irreversible fouling. This study has proven that the addition of CQD additives into membrane greatly improves the polymeric membrane's properties and filtration performance.
  13. Teow YH, Ooi BS, Ahmad AL, Lim JK
    Membranes (Basel), 2020 Dec 24;11(1).
    PMID: 33374274 DOI: 10.3390/membranes11010016
    Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
  14. Ali AM, Rashid KT, Yahya AA, Majdi HS, Salih IK, Yusoh K, et al.
    Membranes (Basel), 2021 Jul 16;11(7).
    PMID: 34357192 DOI: 10.3390/membranes11070542
    In the current work, a Gum, Arabic-modified Graphene (GGA), has been synthesized via a facile green method and employed for the first time as an additive for enhancement of the PPSU ultrafiltration membrane properties. A series of PPSU membranes containing very low (0-0.25) wt.% GGA were prepared, and their chemical structure and morphology were comprehensively investigated through atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Besides, thermogravimetric analysis (TGA) was harnessed to measure thermal characteristics, while surface hydrophilicity was determined by the contact angle. The PPSU-GGA membrane performance was assessed through volumetric flux, solute flux, and retention of sodium alginate solution as an organic polysaccharide model. Results demonstrated that GGA structure had been successfully synthesized as confirmed XRD patterns. Besides, all membranes prepared using low GGA content could impart enhanced hydrophilic nature and permeation characteristics compared to pristine PPSU membranes. Moreover, greater thermal stability, surface roughness, and a noticeable decline in the mean pore size of the membrane were obtained.
  15. Mahenthiran AV, Jawad ZA
    Membranes (Basel), 2021 Jul 10;11(7).
    PMID: 34357169 DOI: 10.3390/membranes11070519
    With an ever-increasing global population, the combustion of fossil fuels has risen immensely to meet the demand for electricity, resulting in significant increase in carbon dioxide (CO2) emissions. In recent years, CO2 separation technology, such as membrane technology, has become highly desirable. Fabricated mixed matrix membranes (MMMs) have the most desirable gas separation performances, as these membranes have the ability to overcome the trade-off limitations. In this paper, blended MMMs are reviewed along with two polymers, namely polyether sulfone (PES) and polyethylene glycol (PEG). Both polymers can efficiently separate CO2 because of their chemical properties. In addition, blended N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents were also reviewed to understand the impact of blended MMMs' morphology on separation of CO2. However, the fabricated MMMs had challenges, such as filler agglomeration and void formation. To combat this, functionalised multi-walled carbon nanotube (MWCNTs-F) fillers were utilised to aid gas separation performance and polymer compatibility issues. Additionally, a summary of the different fabrication techniques was identified to further optimise the fabrication methodology. Thus, a blended MMM fabricated using PES, PEG, NMP, DMF and MWCNTs-F is believed to improve CO2/nitrogen separation.
  16. Amin NAAM, Mokhter MA, Salamun N, Wan Mahmood WMA
    Membranes (Basel), 2021 Jul 20;11(7).
    PMID: 34357196 DOI: 10.3390/membranes11070546
    Eutrophication and water pollution caused by a high concentration of phosphate are two concerning issues that affect water quality worldwide. A novel cellulose-based adsorbent, cellulose acetate/graphene oxide/sodium dodecyl sulphate (CA/GO/SDS), was developed for water treatment. A 13% CA solution in a mixture of acetone:dimethylacetamide (2:1) has been electrospun and complexed with a GO/SDS solution. The field emission scanning electron microscope (FESEM) showed that the CA membrane was pure white, while the CA/GO/SDS membrane was not as white as CA and its colour became darker as the GO content increased. The process of phosphate removal from the solutions was found to be aided by the hydroxyl groups on the surface of the CA modified with GO/SDS, as shown by infrared spectroscopy. An optimization condition for the adsorption process was studied by varying pH, immersion time, and the mass of the membrane. The experimental results from phosphate adsorption showed that CA/GO/SDS had an excellent pH adaptability, with an optimum pH of 7, and maximum removal (>87.0%) was observed with a membrane mass of 0.05 g at an initial concentration of 25 mg L-1. A kinetic study revealed that 180 min of contact time could adsorb about 87.2% of phosphate onto the CA/GO/SDS membrane. A typical pseudo-second-order kinetic model successfully portrayed the kinetic sorption of phosphate, and the adsorption equilibrium data were well-correlated with the Langmuir adsorption model, suggesting the monolayer coverage of adsorbed molecules.
  17. Shafie SNA, Md Nordin NAH, Bilad MR, Misdan N, Sazali N, Putra ZA, et al.
    Membranes (Basel), 2021 May 19;11(5).
    PMID: 34069683 DOI: 10.3390/membranes11050371
    This study focuses on the effect of modified silica fillers by [EMIN][Tf2N] via physical adsorption on the CO2 separation performance of a mixed matrix membrane (MMM). The IL-modified silica was successfully synthesized as the presence of fluorine element was observed in both Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses. The prepared MMMs with different loadings of the IL-modified silica were then compared with an unmodified silica counterpart and neat membrane. The morphology of IL-modified MMMs was observed to have insignificant changes, while polymer chains of were found to be slightly more flexible compared to their counterpart. At 2 bar of operating pressure, a significant increase in performance was observed with the incorporation of 3 wt% Sil-IL fillers compared to that of pure polycarbonate (PC). The permeability increased from 353 to 1151 Barrer while the CO2/CH4 selectivity increased from 20 to 76. The aforementioned increment also exceeded the Robeson upper bound. This indicates that the incorporation of fillers surface-modified with ionic liquid in an organic membrane is worth exploring for CO2 separation.
  18. Azmi N, Othman N
    Membranes (Basel), 2021 May 21;11(6).
    PMID: 34063994 DOI: 10.3390/membranes11060376
    Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein-protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.
  19. Yap YK, Oh PC
    Membranes (Basel), 2021 Aug 20;11(8).
    PMID: 34436404 DOI: 10.3390/membranes11080641
    Magnetic-field-induced dispersion of magnetic fillers has been proven to improve the gas separation performance of mixed matrix membranes (MMMs). However, the magnetic field induced is usually in a horizontal or vertical direction. Limited study has been conducted on the effects of alternating magnetic field (AMF) direction towards the dispersion of particles. Thus, this work focuses on the incorporation and dispersion of ferromagnetic iron oxide-titanium (IV) dioxide (αFe2O3/TiO2) particles in a poly (2,6-dimethyl-1,4-phenylene) oxide (PPOdm) membrane via an AMF to investigate its effect on the magnetic filler dispersion and correlation towards gas separation performance. The fillers were incorporated into PPOdm polymer via a spin-coating method at a 1, 3, and 5 wt% filler loading. The MMM with the 3 wt% loading showed the best performance in terms of particle dispersion and gas separation performance. The three MMMs were refabricated in an alternating magnetic field, and the MMM with the 3 wt% loading presented the best performance. The results display an increment in selectivity by 100% and a decrement in CO2 permeability by 97% to an unmagnetized MMM for the 3 wt% loading. The degree of filler dispersion was quantified and measured using Area Disorder of Delaunay Triangulation mapped onto the filler on binarized MMM images. The results indicate that the magnetized MMM presents a greater degree of dispersion than the unmagnetized MMM.
  20. Yap XL, Wood B, Ong TA, Lim J, Goh BH, Lee WL
    Membranes (Basel), 2021 Jul 31;11(8).
    PMID: 34436354 DOI: 10.3390/membranes11080591
    Extracellular vesicles (EVs) are membranous nanoparticles naturally released from living cells which can be found in all types of body fluids. Recent studies found that cancer cells secreted EVs containing the unique set of biomolecules, which give rise to a distinctive absorbance spectrum representing its cancer type. In this study, we aimed to detect the medium EVs (200-300 nm) from the urine of prostate cancer patients using Fourier transform infrared (FTIR) spectroscopy and determine their association with cancer progression. EVs extracted from 53 urine samples from patients suspected of prostate cancer were analyzed and their FTIR spectra were preprocessed for analysis. Characterization of morphology, particle size and marker proteins confirmed that EVs were successfully isolated from urine samples. Principal component analysis (PCA) of the EV's spectra showed the model could discriminate prostate cancer with a sensitivity of 59% and a specificity of 81%. The area under curve (AUC) of FTIR PCA model for prostate cancer detection in the cases with 4-20 ng/mL PSA was 0.7, while the AUC for PSA alone was 0.437, suggesting the analysis of urinary EVs described in this study may offer a novel strategy for the development of a noninvasive additional test for prostate cancer screening.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links