Displaying all 3 publications

Abstract:
Sort:
  1. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, et al.
    Open Biochem J, 2010;4:53-8.
    PMID: 20563285 DOI: 10.2174/1874091X01004010053
    The aim of this study was to determine the changes of short chain fatty acids (SCFAs) in faeces of inflammatory bowel disease (IBD) patients compared to healthy subjects. SCFAs such as pyruvic, lactic, formic, acetic, propionic, isobutyric and butyric acids were analyzed by using high performance liquid chromatography (HPLC). This study showed that the level of acetic, 162.0 micromol/g wet faeces, butyric, 86.9 micromol/g wet faeces, and propionic acids, 65.6 micromol/g wet faeces, decreased remarkably in IBD faecal samples when compared with that of healthy individuals, 209.7, 176.0, and 93.3 micromol/g wet faeces respectively. On the contrary, lactic and pyruvic acids showed higher levels in faecal samples of IBD than in healthy subjects. In the context of butyric acid level, this study also found that the molar ratio of butyric acid was higher than propionic acid in both faecal samples. This might be due to the high intake of starch from rice among Malaysian population. It was concluded that the level of SCFAs differ remarkably between faecal samples in healthy subjects and that in IBD patients providing evidence that SCFAs more likely play an important role in the pathogenesis of IBD.
  2. Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM
    Pol J Microbiol, 2009;58(2):141-7.
    PMID: 19824398
    In this work we report on the isolation of a local molybdenum-reducing bacterium. The bacterium reduced molybdate or Mo(6+) to molybdenum blue (oxidation states between 5+ to 6+). Electron donors that supported cellular growth were sucrose, maltose, mannitol, fructose, glucose and starch (in decreasing order) with sucrose supporting formation of the highest amount of molybdenum blue at 10 g/l after 24 hours of static incubation. The optimum molybdate and phosphate concentrations that supported molybdate reduction were 20 and 5 mM, respectively. Molybdate reduction was optimal at 37 degrees C. The molybdenum blue produced from cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as S. marcescens strain Dr.Y9 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. No inhibition of molybdenum-reducing activity was seen using electron transport system (ETS) inhibitors such as antimycin A, 1HQNO (Hydroxyquinoline-N-Oxide), sodium azide and cyanide suggesting that the ETS of this bacterium is not the site of molybdate reduction.
  3. Kabeir BM, Yazid AM, Stephenie W, Hakim MN, Anas OM, Shuhaimi M
    Lett Appl Microbiol, 2008 Jan;46(1):32-7.
    PMID: 17944838
    To assess the safety of Bifidobacterium pseudocatenulatum G4 in BALB/c mice that involves examination of bacterial translocation, changes in the internal organs and histology of the intestinal lining.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links