In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made.
The present paper reports on the influence of sintering temperature on the porosity and strength of porous hydroxyapatite (HA). HA powder was first prepared by the sol-gel precipitation method using calcium hydroxide and ortho-phosporic acid. The fine HA powder, measuring <50 microm was then mixed into a slurry with the addition of binder agent, being a mixture of sago and PVA. A small amount of sodium dodecyl sulphate was also used as a foaming agent. Porous HA samples were then prepared via slip casting technique. The surface morphology of the sintered samples was observed under scanning electron microscopy at 20 kV and the compositions were determined via SEM-EDX. A universal testing machine was used to determine the compaction strength of the sintered samples.
The paper discusses the influence of sintering temperature on the microstructure and strength of hydroxyapatite ceramics prepared using the extrusion process. The average pore diameters observed were in the range of approximately 150mm to 300mm whereas the compaction strength was found to be around 120-160 MPa.