Displaying all 2 publications

Abstract:
Sort:
  1. Andas AR, Abdul AB, Rahman HS, Sukari MA, Abdelwahab SI, Samad NA, et al.
    Asian Pac J Cancer Prev, 2015;16(10):4311-6.
    PMID: 26028091
    Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an IC50 value of 12.0 μg/mL, without affecting human normal liver cells, WRL-68 (IC50>50 μg/mL) causing G0/G1 cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of NF-κB that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.
  2. Anasamy T, Abdul AB, Sukari MA, Abdelwahab SI, Mohan S, Kamalidehghan B, et al.
    PMID: 23710242 DOI: 10.1155/2013/939810
    The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3',4'-dimethoxyphenyl)-4-[(E)-3 (‴) ,4 (‴) -dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear cells, and to further investigate the involvement of apoptosis-related proteins that leads, to the probable pathway in which apoptosis is triggered. Cytotoxicity test using MTT assay showed selective inhibition of ZC-B11 towards T-acute lymphoblastic leukemia cells, CEMss, with an IC50 value of 7.11 ± 0.240  μ g/mL, which did not reveal cytotoxic effects towards normal human blood mononuclear cells (IC50 > 50  μ g/mL). Morphology assessments demonstrated distinctive morphological changes corresponding to a typical apoptosis. ZC-B11 also arrested cell cycle progression at S phase and causes DNA fragmentation in CEMss cells. Decline of mitochondrial membrane potential was also determined qualitatively. In the apoptosis-related protein determination, ZC-B11 was found to significantly upregulate Bax, caspase 3/7, caspase 9, cytochrome c, and SMAC and downregulate Bcl-2, HSP70, and XIAP, but did not affect caspase 8, p53, and BID. These results demonstrated for the first time the apoptogenic property of ZC-B11 on CEMss cell line, leading to the programmed cell death via intrinsic mitochondrial pathway of apoptosis induction.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links