Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).
The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.
A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes.
In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.
Microwave assisted acid hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce bioethanol from sago pith waste (SPW) was studied. The energy consumption for microwave hydrolysis at different energy inputs and acid concentration were calculated. The overall energy consumption for bioethanol fuel production from SPW was assessed. A maximum of 88% glucose yield and 80% ethanol yield (3.1 g ethanol per 10 g SPW) were obtained using 1.0 mol/L H2SO4. Microwave hydrolysis using 1.0 mol/L H2SO4 consumed the minimum energy of 8.1 kJ to produce 1 g glucose from SPW when energy input was fixed at 54 kJ (900 W for 1 min). In general, 1 g glucose can produce 16 kJ. The overall energy consumption for fuel grade bioethanol production from SPW was 31.77 kJ per g ethanol, which was slightly higher than the lower heating values of ethanol (26.74 kJ/g ethanol).
The study explores on upstream and downstream process in Microcystis aeruginosa for biodiesel production. The alga was isolated from temple tank, acclimatized and successfully mass cultivated in open raceway pond at semi-continuous mode. A two step combined process was designed and harvested 99.3% of biomass, the daily dry biomass productivity was recorded up to 28gm(-2)day(-1). The lipid extraction was optimized and achieved 21.3%; physicochemical properties were characterized and found 11.7% of FFA, iodine value 72% and 99.2% of ester content. The lipid was transesterified by a two step simultaneous process and produced 90.1% of biodiesel; the calorific value of the biodiesel was 38.8MJ/kg. Further, the physicochemical properties of biodiesel was characterized and found to be within the limits of American ASTM D6751. Based on the areal and volumetric biomass productivity estimation, M. aeruginosa can yield 84.1 tons of dry biomass ha(-1)year(-1).
Selective Non-Catalytic Reduction (SNCR) of nitric oxide has been studied experimentally by injecting aqueous urea solution with and without additive in a pilot-scale diesel fired tunnel furnace at 3.4% excess oxygen level and with low ppm of baseline NO(x) ranging from 65 to 75 ppm within the investigated temperature range. The tests have been carried out using commercial grade urea as NO(x) reducing agent and commercial grade sodium carbonate as additive. The furnace simulated the small-scale combustion systems, where the operating temperatures are usually in the range of about 973 to 1323 K and NO(x) emission level remains below 100 ppm. With 5% plain urea solution, at Normalized Stoichiometric Ratio (NSR) of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO(x) reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO(x) reduction shifted towards lower temperatures. The result is quite significant, especially for this investigated level of baseline NO(x). The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 4 and optimum temperature of NO(x) reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade sodium carbonate is a potential additive.