Displaying all 2 publications

Abstract:
Sort:
  1. Razali RA, Lokanathan Y, Yazid MD, Ansari AS, Saim AB, Hj Idrus RB
    Int J Mol Sci, 2019 Jul 16;20(14).
    PMID: 31315241 DOI: 10.3390/ijms20143492
    Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue. Prolonged inflammation causes long-term EMT activation that can lead to tissue fibrosis or cancer. Due to activation of EMT by its signaling pathway, therapeutic approaches that modulate that pathway should be explored. Olea europaea (OE) is well-known for its anti-inflammatory effects and abundant beneficial active compounds. These properties are presumed to modulate EMT events. This article reviews recent evidence of the effects of OE and its active compounds on EMT events and EMT-related diseases. Following evidence from the literature, it was shown that OE could modulate TGFβ/SMAD, AKT, ERK, and Wnt/β-catenin pathways in EMT due to a potent active compound that is present therein.
  2. Ansari AS, Yazid MD, Sainik NQAV, Razali RA, Saim AB, Idrus RBH
    Stem Cells Int, 2018;2018:2406462.
    PMID: 30534156 DOI: 10.1155/2018/2406462
    Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage. A comprehensive search was conducted in Medline via Ebscohost and Scopus, where relevant studies published between 1961 and 2018 were selected. The main inclusion criteria were that articles must be primary studies published in English evaluating osteogenic induction of WJ-MSCs. The literature search identified 92 related articles, but only 18 articles met the inclusion criteria. These include two animal studies, three articles containing both in vitro and in vivo assessments, and 13 articles on in vitro studies, all of which are discussed in this review. There were two types of osteogenic induction used in these studies, either chemical or physical. The studies demonstrate that WJ-MSCs are able to differentiate into osteogenic lineage and promote osteogenesis. In light of these observations, it is suggested that WJ-MSCs can be a potential source of stem cells for osteogenic induction, as an alternative to bone marrow-derived mesenchymal stem cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links