Displaying all 2 publications

Abstract:
Sort:
  1. Arashi M, Roozbeh M, Hamzah NA, Gasparini M
    PLoS One, 2021;16(4):e0245376.
    PMID: 33831027 DOI: 10.1371/journal.pone.0245376
    With the advancement of technology, analysis of large-scale data of gene expression is feasible and has become very popular in the era of machine learning. This paper develops an improved ridge approach for the genome regression modeling. When multicollinearity exists in the data set with outliers, we consider a robust ridge estimator, namely the rank ridge regression estimator, for parameter estimation and prediction. On the other hand, the efficiency of the rank ridge regression estimator is highly dependent on the ridge parameter. In general, it is difficult to provide a satisfactory answer about the selection for the ridge parameter. Because of the good properties of generalized cross validation (GCV) and its simplicity, we use it to choose the optimum value of the ridge parameter. The GCV function creates a balance between the precision of the estimators and the bias caused by the ridge estimation. It behaves like an improved estimator of risk and can be used when the number of explanatory variables is larger than the sample size in high-dimensional problems. Finally, some numerical illustrations are given to support our findings.
  2. Salarzadeh Jenatabadi H, Moghavvemi S, Wan Mohamed Radzi CWJB, Babashamsi P, Arashi M
    PLoS One, 2017;12(9):e0182311.
    PMID: 28886019 DOI: 10.1371/journal.pone.0182311
    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links