Displaying all 2 publications

Abstract:
Sort:
  1. Ashazila MJ, Kannan TP, Venkatesh RN, Hoh BP
    Oral Oncol, 2011 May;47(5):358-64.
    PMID: 21450513 DOI: 10.1016/j.oraloncology.2011.03.005
    Loss of heterozygosity (LOH) and microsatellite instability (MSI) have been documented as important events in oral squamous cell carcinoma (OSCC). Five microsatellite markers D3S192, D3S966, D3S647, D3S1228 and D3S659 were selected on chromosome 3p because of high frequency of alterations reported in head and neck squamous cell carcinoma and the involvement of von Hippel Lindau (VHL) at 3p25-26 and the fragile histidine triad (FHIT) at 3p14.2 genes proven in many tumour types. A total of 50 archival tissue samples of OSCC and corresponding normal samples were analyzed for LOH and MSI status. The overall LOH for the markers selected on 3p was 56 out of 189 informative cases (29.6%). The most frequent LOH was identified for the marker D3S966 which was 18/42 (42.8%) of informative cases suggesting the presence of putative tumour suppressor genes (TSGs) in this loci. In this study, high frequency of microsatellite instability was found in D3S966 which was 28.6% of informative cases; this reveals the possibility of mutations of MMR genes in this region. Frequent microsatellite alterations (MA) were observed in 3 markers D3S966 (71.4%), D3S1228 (56.7%) and D3S192 (41.0%). There was no significant association between LOH with gender, tumour stages and differentiation grades. However, there was a significant association between tumour stage and differentiation grades with MSI status in OSCC in Malaysian population with p values of 0.002 and 0.035, respectively. There was also a significant association between MA and differentiation grades (p=0.041).
  2. Hoh BP, Deng L, Julia-Ashazila MJ, Zuraihan Z, Nur-Hasnah M, Nur-Shafawati AR, et al.
    Hum Genomics, 2015 Jul 22;9:16.
    PMID: 26194999 DOI: 10.1186/s40246-015-0039-x
    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links