Displaying all 5 publications

Abstract:
Sort:
  1. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
  2. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi H, Froemming GR
    Exp Cell Res, 2015 Sep 10;337(1):87-93.
    PMID: 26163894 DOI: 10.1016/j.yexcr.2015.07.002
    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases.
  3. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
  4. Norhazlin J, Nor-Ashikin MN, Hoh BP, Sheikh Abdul Kadir SH, Norita S, Mohd-Fazirul M, et al.
    Genet. Mol. Res., 2015;14(3):10172-84.
    PMID: 26345954 DOI: 10.4238/2015.August.28.1
    The quality of RNA is crucial when performing microarray experiments. This is particularly important when dealing with preimplantation embryos, from which a minimum yield of RNA of good quality can be produced. We report the optimization of several RNA extraction methods applied to preimplantation embryos at different stages of development. The quality of the samples was confirmed using a microarray and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis. A total of 30 cultured two-cell stage embryos of ICR mice were pooled at the 8-cell, morula, and blastocyst stages. The embryos were divided into two groups comprising DNase-treated and non-DNase-treated RNA samples. Total RNA was extracted using a Pico Pure RNA Isolation Kit following the manufacturer protocol, with some modifications. Lysed samples were bound to a silica-based filter, treated with deoxyribonuclease I (DNase I), and washed several times before elution. RNA concentration and integrity were evaluated using an Agilent 2100 Bioanalyzer and an RNA 6000 Pico Assay kit. Although concentrations of non-DNase-treated RNAs were higher than DNase-treated RNA, DNase-treated RNA gave a higher RNA integrity number compared with non-DNase-treated RNA. Inclusion of DNase treatment in the RNA extraction procedure gave the best quality RNA samples from preimplantation embryos, as validated by microarray and RT-qPCR quality control.
  5. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, et al.
    Bull. Exp. Biol. Med., 2014 Jan;156(3):393-8.
    PMID: 24771384 DOI: 10.1007/s10517-014-2357-8
    Morphological and phenotypical signs of cultured readaptation osteoblasts were studied after a short-term space mission. The ultrastructure and phenotype of human osteoblasts after Soyuz TMA-11 space flight (2007) were evaluated by scanning electron microscopy, laser confocal microscopy, and ELISA. The morphofunctional changes in cell cultures persisted after 12 passages. Osteoblasts retained the drastic changes in their shape and size, contour deformation, disorganization of the microtubular network, redistribution of organelles and specialized structures of the plasmalemma in comparison with the ground control cells. On the other hand, the expression of osteoprotegerin and osteocalcin (bone metabolism markers) increased; the expression of bone resorption markers ICAM-1 and IL-6 also increased, while the expression of VCAM-1 decreased. Hence, space flight led to the development of persistent shifts in cultured osteoblasts indicating injuries to the cytoskeleton and the phenotype changes, indicating modulation of bone metabolism biomarkers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links