Displaying all 5 publications

Abstract:
Sort:
  1. Imad R, Sheikh Z, Rao Pichika M, Kit-Kay M, Siddiqui RA, Nawaid Shah SN, et al.
    Exp Cell Res, 2023 Sep 01;430(1):113687.
    PMID: 37356748 DOI: 10.1016/j.yexcr.2023.113687
    BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression.

    PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.

    MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.

    RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.

    CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.

  2. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi H, Froemming GR
    Exp Cell Res, 2015 Sep 10;337(1):87-93.
    PMID: 26163894 DOI: 10.1016/j.yexcr.2015.07.002
    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases.
  3. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
  4. Mahkamova K, Latar NM, Aspinall S, Meeson A
    Exp Cell Res, 2019 01 01;374(1):104-113.
    PMID: 30465733 DOI: 10.1016/j.yexcr.2018.11.012
    Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated. One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12. This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.
  5. Dzaki N, Woo WK, Thangadurai S, Azzam G
    Exp Cell Res, 2019 12 15;385(2):111688.
    PMID: 31678212 DOI: 10.1016/j.yexcr.2019.111688
    CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links