Displaying all 2 publications

Abstract:
Sort:
  1. Ya'aini N, Amin NA, Asmadi M
    Bioresour Technol, 2012 Jul;116:58-65.
    PMID: 22609656 DOI: 10.1016/j.biortech.2012.03.097
    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid.
  2. Zainol MM, Amin NA, Asmadi M
    Bioresour Technol, 2015 Aug;190:44-50.
    PMID: 25919936 DOI: 10.1016/j.biortech.2015.04.067
    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links