Displaying all 2 publications

Abstract:
Sort:
  1. Kou L, Ye N, Waheed A, Auliya RZ, Wu C, Ooi PC, et al.
    Sci Rep, 2023 May 20;13(1):8194.
    PMID: 37210533 DOI: 10.1038/s41598-023-35183-8
    Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon. Furthermore, with the increase of the applied electrical signal over time, the conductance of the electrical synapse gradually changes, and the electronic synapse also shows plasticity dependence on the amplitude and frequency of the pulse applied. In particular, the devices with the structure of Ag/PI:GQDs/ITO prepared in this study can produce a stable response to the stimulation of electrical signals between millivolt to volt, showing not only high sensitivity but also a wide range of "feelings", which makes the electronic synapses take a step forwards to emulate biological synapses. Meanwhile, the electronic conduction mechanisms of the device are also studied and expounded in detail. The findings in this work lay a foundation for developing brain-like neuromorphic modeling in artificial intelligence.
  2. Auliya RZ, Ooi PC, Sadri R, Talik NA, Yau ZY, Mohammad Haniff MAS, et al.
    Sci Rep, 2021 Aug 31;11(1):17432.
    PMID: 34465806 DOI: 10.1038/s41598-021-96909-0
    A new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm-2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links