Displaying 1 publication

Abstract:
Sort:
  1. Awajan AM, Ismail MT, Al Wadi S
    PLoS One, 2018;13(7):e0199582.
    PMID: 30016323 DOI: 10.1371/journal.pone.0199582
    Many researchers documented that the stock market data are nonstationary and nonlinear time series data. In this study, we use EMD-HW bagging method for nonstationary and nonlinear time series forecasting. The EMD-HW bagging method is based on the empirical mode decomposition (EMD), the moving block bootstrap and the Holt-Winter. The stock market time series of six countries are used to compare EMD-HW bagging method. This comparison is based on five forecasting error measurements. The comparison shows that the forecasting results of EMD-HW bagging are more accurate than the forecasting results of the fourteen selected methods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links