OBJECTIVES: Our objective is to identify the evolving trends and impacts of publication in this field, as well as the most productive and influential countries, institutions, authors, themes, and articles.
METHODS: A bibliometric study was conducted using a comprehensive query string such as "positron emission tomography" AND "image processing" AND optimization to retrieve 1,783 publications from 1981 to 2022 found in the Scopus database related to this field of study.
RESULTS: The findings revealed that the most influential country, institution, and authors are from the USA, and the most prevalent theme is TOF PET image reconstruction.
CONCLUSION: The increasing trend in publication in the field of optimization of image processing in PET scans would address the challenges in PET scan by reducing radiation exposure, faster scanning speed, as well as enhancing lesion identification.
METHODS: In this study, a systematic review and a meta-analysis study were conducted on CT phantom for resolution study especially based on the low contrast detectability (LCD). Furthermore, the association between the CT parameter such as tube voltage and the type of reconstruction algorithm, the amount of phantom scanning affecting the image quality and the exposure dose were also investigated in this study. We utilize PubMed, ScienceDirect, Google Scholar and Scopus databases to search related published articles from the year 2011 until 2020. The notable keywords comprise "computed tomography", "CT phantom", and "low contrast detectability". Of 52 articles, 20 articles are within the inclusion criteria in this systematic review.
RESULTS: The dichotomous outcomes were chosen to represent the results in terms of risk ratio as per meta-analysis study. Notably, the noise in iterative reconstruction (IR) reduced by 24%, 33% and 36% with the use of smooth, medium and sharp filters, respectively. Furthermore, adaptive iterative dose reduction (AIDR 3D) improved image quality and the visibility of smaller less dense objects compared to filtered back-projection. Most of the researchers used 120 kVp tube voltage to scan phantom for quality assurance study.
CONCLUSION: Hence, optimizing primary factors such as tube potential reduces the dose exposure significantly, and the optimized IR technique could substantially reduce the radiation dose while maintaining the image quality.