Displaying all 2 publications

Abstract:
Sort:
  1. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
  2. Rahim S, Ayob MTM, Hasim MH, Abdul Rahman I, Radiman S
    Luminescence, 2019 Nov;34(7):699-706.
    PMID: 31293037 DOI: 10.1002/bio.3655
    Gd2 O2 S:Eu3+ nanophosphors have been successfully synthesized using microwave irradiation and γ-irradiation methods with polyvinyl pyrrolidone as a stabilizer. The physical and luminescence spectra were compared. The morphologies of both Gd2 O2 S:Eu3+ nanophosphors were in the hexagonal phase and mainly consisted of spherical nanostructures with diameters of ~90 nm and ~50 nm for both microwave irradiation and γ-irradiation methods. Upon 325 nm of ultraviolet (UV) light excitation, strong red emissions (626 nm) were observed for both methods; these emissions corresponded to the 5 D0 →7 F2 transition of Eu3+ ions. However, Gd2 O2 S:Eu3+ nanophosphors following microwave treatment showed better luminescence intensity than Gd2 O2 S:Eu3+ nanophosphors treated with γ-irradiation. This difference was attributed to the crystallinity phase and surface quenching effects of Gd2 O2 S:Eu3+ nanophosphors. The reaction mechanisms of Gd2 O2 S:Eu3+ nanophosphors in both methods are discussed in detail.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links