Displaying all 2 publications

Abstract:
Sort:
  1. Ayub NM, Kassim NFA, Sabar S, Webb CE, Xiang KZ, Hashim NA
    Int J Biol Macromol, 2023 Jan 01;224:1460-1470.
    PMID: 36328267 DOI: 10.1016/j.ijbiomac.2022.10.233
    The effective control of Aedes mosquitoes using traditional control agents is increasingly challenging due to the presence of insecticide resistance in many populations of key mosquito vectors. An alternative strategy to insecticides is the use of toxic sugar baits, however it is limited due to short-term efficacy. Alginate-Gelatin hydrogel beads (AGHBs) may be an effective alternative by providing longer periods of mosquito attraction and control, especially of key vectors of dengue viruses such as Aedes aegypti and Aedes albopictus. Sodium alginate (ALG) and gelatin (GLN) are natural polymers, which can be a potential candidate to develop the AGHBs baits due to their biodegradability and environmental safety. Here we provide an assessment of the preparation of AGHBs optimized by varying the concentrations of ALG, GLN, and its cross-linking time (TIME). Fourier transform infrared spectroscopy (FTIR) analysis results in the determination of liquid bait loaded in the AGHBs. The evaluation of AGHBs' effectiveness as the potential baiting tool based on the mortality rate of mosquitoes after the bait consumption. The 100 % percent mortality of Aedes mosquitoes was obtained within 72 h of bait consumption. The field evaluation also justifies the applicability of AGHBs for outdoor applications. We conclude that the AGHBs are applicable as a baiting tool in carrying liquid bait in achieving mosquito mortality.
  2. Zakaria Z, Abdul Rahim R, Mansor MS, Yaacob S, Ayub NM, Muji SZ, et al.
    Sensors (Basel), 2012;12(6):7126-56.
    PMID: 22969341 DOI: 10.3390/s120607126
    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links