Displaying 1 publication

Abstract:
Sort:
  1. Azeem W, Shahzad MK, Wong YH
    Heliyon, 2024 Jan 15;10(1):e23818.
    PMID: 38205339 DOI: 10.1016/j.heliyon.2023.e23818
    Perovskite materials are the well-known of solar cell applications and have excellent characteristics to study and explain the photocatalytic research. Exchange generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof-PBE correlation functionals and density functional theory (DFT)-based Cambridge Serial Total Energy Package (CASTEP) software are used to inspect the structural, electrical, mechanical, and the optical aspects of Zinc-based cubic perovskite RbZnO3. The compound is found to be in a stable cubic phase according to our study. The predicted elastic characteristics also satisfy the mechanical criterion for stability. Pugh's criterion indicates that RbZnO3 is brittle. The examination shows that the electronic band structure, RbZnO3 possesses an indirect bandgap (BG) that has 4.23eV. Findings of BG analysis agree with currently available evidence. Total and partial density of states (DOS) are used in the confirmation of degree of a localized electrons in special band. Optical transitions in compound are evaluated by adjusting damping ratio for the appropriate peaks of the notional dielectric functions. On one hand, the material is a semiconductor at absolute zero. On the other hand, the dielectric function's fictitious element dispersion illustrates the wide range of values for energy transparency. This substance might therefore be used in a solar cell to capture ultraviolet light.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links