Displaying all 4 publications

Abstract:
Sort:
  1. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
  2. Aziman N, Abdullah N, Noor ZM, Kamarudin WS, Zulkifli KS
    J Food Sci, 2014 Apr;79(4):M583-92.
    PMID: 24666004 DOI: 10.1111/1750-3841.12419
    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
  3. Yusof NL, Mutalib NA, Nazatul UK, Nadrah AH, Aziman N, Fouad H, et al.
    Foods, 2021 Oct 08;10(10).
    PMID: 34681430 DOI: 10.3390/foods10102379
    Food contamination leading to the spoilage and growth of undesirable bacteria, which can occur at any stage along the food chain, is a significant problem in the food industry. In the present work, biopolymer polybutylene succinate (PBS) and polybutylene succinate/tapioca starch (PBS/TPS) films incorporating Biomaster-silver (BM) and SANAFOR® (SAN) were prepared and tested as food packaging to improve the lifespan of fresh chicken breast fillets when kept in a chiller for seven days. The incorporation of BM and SAN into both films demonstrated antimicrobial activity and could prolong the storability of chicken breast fillets until day 7. However, PBS + SAN 2%, PBS/TPS + SAN 1%, and PBS/TPS + SAN 2% films showed the lowest microbial log growth. In quality assessment, incorporation of BM and SAN into both film types enhanced the quality of the chicken breast fillets. However, PBS + SAN 1% film showed the most notable enhancement of chicken breast fillet quality, as it minimized color variation, slowed pH increment, decreased weight loss, and decelerated the hardening process of the chicken breast fillets. Therefore, we suggest that the PBS + SAN and PBS/TPS + SAN films produced in this work have potential use as antimicrobial packaging in the future.
  4. Aziman N, Jawaid M, Mutalib NAA, Yusof NL, Nadrah AH, Nazatul UK, et al.
    Foods, 2021 Nov 16;10(11).
    PMID: 34829093 DOI: 10.3390/foods10112812
    The function of packaging is crucial in the maintenance of fresh meat product quality. This study aimed to assess the efficiency of six films added with coatings 2379L/220 and 2379L/221 (containing sage extracts) to inhibit Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli, which showed that two of the six films had a significant effect. Additionally, the effects of the films on refrigerated skinless chicken breast meat were evaluated based on microbiological content, colour, weight loss, texture and pH. Four of the six films were examined could extend the storability of refrigerated chicken breast fillets for up to seven days. All six treated films improved the pH, colour stability, weight loss, and texture of the chicken fillets. Therefore, these findings suggested that the coatings containing sage extracts having different viscosities (2379L/220 and 2379L/221) were effective as antimicrobial adhesives in food packaging films and can be commercially applied in prolonging the storage of chicken breast meat without affecting their quality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links