Displaying all 2 publications

Abstract:
Sort:
  1. Hariri F, Zainudin NAA, Anuar AMS, Ibrahim N, Abdullah NA, Aziz IA, et al.
    J Craniofac Surg, 2020 11 7;32(1):355-359.
    PMID: 33156163 DOI: 10.1097/SCS.0000000000006981
    BACKGROUND: In syndromic craniosynostosis (SC), unlike persistent corneal irritation due to severe exophthalmos and increased intracranial pressure, optic canal (OC) stenosis has been scarcely reported to cause visual impairment. This study aimed to validate the OC volumetric and surface area measurement among SC patients.

    METHODS: Sixteen computed tomography scan of SC patients (8 months-6 years old) were imported to Materialise Interactive Medical Image Control System (MIMICS) and Materialise 3-matics software. Three-dimensional (3D) OC models were fabricated, and linear measurements were obtained. Mathematical formulas were used for calculation of OC volume and surface area from the 3D model. The same measurements were obtained from the software and used as ground truth. Data normality was investigated before statistical analyses were performed. Wilcoxon test was used to validate differences of OC volume and surface area between 3D model and software.

    RESULTS: The mean values for OC surface area for 3D model and MIMICS software were 103.19 mm2 and 31.27 mm2, respectively, whereas the mean for OC volume for 3D model and MIMICS software were 184.37 mm2 and 147.07 mm2, respectively. Significant difference was found between OC volume (P = 0.0681) and surface area (P = 0.0002) between 3D model and software.

    CONCLUSION: Optic canal in SC is not a perfect conical frustum thus making 3D model measurement and mathematical formula for surface area and volume estimation not ideal. Computer software remains the best modality to gauge dimensional parameter and is useful to elucidates the relationship of OC and eye function as well as aiding intervention in SC patients.

  2. Hui TX, Kasim S, Aziz IA, Fudzee MFM, Haron NS, Sutikno T, et al.
    BMC Bioinformatics, 2024 Jan 12;25(1):23.
    PMID: 38216898 DOI: 10.1186/s12859-024-05632-w
    BACKGROUND: With the exponential growth of high-throughput technologies, multiple pathway analysis methods have been proposed to estimate pathway activities from gene expression profiles. These pathway activity inference methods can be divided into two main categories: non-Topology-Based (non-TB) and Pathway Topology-Based (PTB) methods. Although some review and survey articles discussed the topic from different aspects, there is a lack of systematic assessment and comparisons on the robustness of these approaches.

    RESULTS: Thus, this study presents comprehensive robustness evaluations of seven widely used pathway activity inference methods using six cancer datasets based on two assessments. The first assessment seeks to investigate the robustness of pathway activity in pathway activity inference methods, while the second assessment aims to assess the robustness of risk-active pathways and genes predicted by these methods. The mean reproducibility power and total number of identified informative pathways and genes were evaluated. Based on the first assessment, the mean reproducibility power of pathway activity inference methods generally decreased as the number of pathway selections increased. Entropy-based Directed Random Walk (e-DRW) distinctly outperformed other methods in exhibiting the greatest reproducibility power across all cancer datasets. On the other hand, the second assessment shows that no methods provide satisfactory results across datasets.

    CONCLUSION: However, PTB methods generally appear to perform better in producing greater reproducibility power and identifying potential cancer markers compared to non-TB methods.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links