This study examines the strength development of fly ash-based geopolymer (FAG) as a stabilizer for road base material for pavement construction. In the last decade, there has been a rapid development of conventionally treated bases, such as cement-treated bases. However, a major problem with this kind of application is the shrinkage cracking in cement-treated bases that may result in the reflection cracks on the asphalt pavement surface. This study explores the effects of FAG on base layer properties using mechanistic laboratory evaluation and its practicability in pavement base layers. The investigated properties are flexural strength (FS), unconfined compressive strength (UCS), shrinkage, and resilient modulus (RM), as well as indirect tensile strength (ITS). The findings showed that the mechanical properties of the mixture enhanced when FAG was added to 80-85% of crushed aggregate, with the UCS being shown to be a crucial quality parameter. The effectiveness of FAG base material can have an impact on the flexible pavements' overall performance since the base course stiffness directly depends on the base material properties. As a stabilizing agent for flexible pavement applications, the FAG-stabilized base appeared promising, predicated on test outcomes.
This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5-30 µm with the formation of isolated and intergranular holes.