Displaying all 3 publications

Abstract:
Sort:
  1. Indudharan R, Das PK, Azman AA, Suhaiza S
    Singapore Med J, 1998 Aug;39(8):376-9.
    PMID: 9844502
    A case of chondrosarcoma of the nasal septum is presented with the result of treatment. The patient was admitted for a growth in the nose of four years' duration. Fine needle aspiration for cytological examination was suggestive of squamous cell carcinoma. She was treated with lateral rhinotomy and wide excision followed by septorhinoplasty. Histological examination showed that the lesion was chondrosarcoma. The patient remained free of disease 26 months after surgery.
  2. Azman AA, Siok-Fong C, Rajab NF, Md Zin RR, Ahmad Daud NN, Mohamad Hanif EA
    Mol Biol Rep, 2023 Sep;50(9):7909-7917.
    PMID: 37442895 DOI: 10.1007/s11033-023-08661-5
    Triple negative breast cancer (TNBC) is the most aggressive intrinsic breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and low levels of human epidermal growth factor receptor 2 (HER2). The complex nature of TNBC has resulted in little therapeutic progress for the past several decades. The standard of care remains the FEC cocktail (5-fluorouracil (5-FU), epirubicin and cyclophosphamide). However, early relapse and metastasis in TNBC patients persists in causing dismal clinical outcomes. Due to complex heterogeneity features of TNBC, identifying the biomarker associated to the chemoresistance remains a challenge. The emergence of the long non-coding RNA (lncRNA) as a potential signature may have proven to be a new deterrent to diagnostic and treatment options. Previous studies unveiled the associations of lncRNA in the development of TNBCs whereby the aggressiveness and response to therapies may be associated by the abrogation of the molecular mechanism lncRNA. Terminal differentiation induced ncRNA (TINCR) is a lncRNA which have been linked with many cancers including TNBC. The expression and behavior of TINCR may exert unfavorable outcome in TNBCs. Nevertheless, the underlying molecular mechanism of TINCR in driving chemoresistance in TNBC is not well understood. This review will highlight the potential molecular mechanisms of TINCR in TNBC chemoresistance and how it can serve as a future potential prognostic and therapeutic target for a better treatment intervention.
  3. Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128230.
    PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230
    Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links