Polymeric materials such as polypropylene (PP), polyethylene (PE) and ethylene propylene diene monomer (EPDM) are widely used as insulators for cable applications. We investigated the effect of alumina trihydrate (ATH) loading on the mechanical properties of PP/EPDM blend. Preliminary study showed that PP/EPDM (60:40) was the optimum composition. ATH filled PP/EPDM composites was prepared by using twin screw extruder. In this study, the tensile properties and hardness of the composites were evaluated. The tensile modulus and hardness increased while elongation at break and tensile strength decreased with increasing ATH content. Scanning electron microscope was used to study the morphology of ATH in PP/EPDM blend.
The effects of ammonium polyphosphate (APP) as flame retardant and kenaf as fillers on flammability, thermal and mechanical properties of polypropylene (PP) composites were determined. Test specimens were prepared by using a corotating twin screw extruder for the compounding process followed by injection molding. The flame retardancy of the composites was determined by using limiting oxygen index (LOI) test. Addition of flame retardant into kenaf-PP composites significantly increased the LOI values that indicated the improvement of flame retardancy. Thermogravimetric analysis was done to examine the thermal stability of the composites. The addition of kenaf fiber in PP composites decreased the thermal stability significantly but the influence of APP on thermal properties of the kenaf-filled PP composites was not significant. The flexural strength and modulus of the composites increased with the addition of APP into kenaf filled
PP composite. The addition of APP into kenaf filled PP causes increase in the impact strength while increasing the APP content in the kenaf filled PP composite show decrease in impact strength.
Polylactic acid (PLA)/Epoxidized natural rubber (ENR-50) blends were prepared by melt extrusion followed by injection
molding to fabricate the test samples. The effect of ENR-50 loadings on the morphological, mechanical, chemical
resistance and water absorption properties of the blends were studied using standard methods. The toughness of the
blend improved with ENR loading up to 20 wt. % but flexural and tensile strength decreased. The balanced mechanical
properties were obtained at 20 wt. % ENR-50 loading. SEM showed good distribution and increased ENR particle size
as ENR content increased from 10 to 30 wt. %. The differential scanning calorimeter (DSC) showed a steady drop in
crystallization temperature (Tc
) as ENR content increases while the glass transition temperature (Tg
) remained unchanged.
Water absorption was observed to increase with ENR loadings. Increase in ENR content was also observed to reduce the
chemical resistance of the blends.