Displaying all 4 publications

Abstract:
Sort:
  1. Yap CK, Wong KW, Al-Shami SA, Nulit R, Cheng WH, Aris AZ, et al.
    PMID: 33383875 DOI: 10.3390/ijerph18010195
    This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to.
  2. Yap CK, Chew W, Al-Mutairi KA, Al-Shami SA, Nulit R, Ibrahim MH, et al.
    PMID: 33924835 DOI: 10.3390/ijerph18094682
    The invasive weed Asystasia gangetica was investigated for its potential as a biomonitor and as a phytoremediator of potentially toxic metals (PTMs) (Cd, Cu, Ni, Pb, and Zn) in Peninsular Malaysia owing to its ecological resistance towards unfavourable environments. The biomonitoring potential of PTMs was determined based on the correlation analysis of the metals in the different parts of the plant (leaves, stems, and roots) and its habitat topsoils. In the roots, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 2.18, 9.22 to 139, 0.63 to 5.47, 2.43 to 10.5, and 50.7 to 300, respectively. In the leaves, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.16, 7.94 to 20.2, 0.03 to 6.13, 2.10 to 21.8, and 18.8 to 160, respectively. In the stems, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.25, 5.57 to 11.8, 0.23 to 3.69, 0.01 to 7.79, and 26.4 to 246, respectively. On the other hand, the phytoremediation potential of the five metals was estimated based on the bioconcentration factor (BCF) and the translocation factor (TF) values. Correlation analysis revealed that the roots and stems could be used as biomonitors of Cu, the stems as biomonitors of Ni, the roots and leaves as biomonitors of Pb, and all three parts of the plant as biomonitors of Zn. According to the BCF values, in the topsoil, the "easily, freely, leachable, or exchangeable" geochemical fractions of the five metals could be more easily transferred to the roots, leaves, and stems when compared with total concentrations. Based on the TF values of Cd, Ni, and Pb, the metal transfer to the stems (or leaves) from the roots was efficient (>1.0) at most sampling sites. The results of BCF and TF showed that A. gangetica was a good phytoextractor for Cd and Ni, and a good phytostabilizer for Cu, Pb, and Zn. Therefore, A. gangetica is a good candidate as a biomonitor and a phytoremediator of Ni, Pb, and Zn for sustainable contaminant remediation subject to suitable field management strategies.
  3. Wong KW, Yap CK, Yaacob A, Nulit R, Omar H, Aris AZ, et al.
    PMID: 33751349 DOI: 10.1007/s11356-021-13361-3
    Along with the growing utilization of zinc (Zn) and Zn-containing nanoparticles in various industries, Zn ecotoxicological evaluation on human food supply is necessary even though Zn is generally considered safe and rarely concentrated ecotoxicologically. This study aimed to investigate the bioaccumulation of Zn in 18 species of vegetables (seven leafy, nine fruity vegetables and one species each of tuber and legume) collected from two farming sites in the west coast of Peninsular Malaysia. A human health risk assessment (HHRA) was also conducted. In addition to HHRA based on the general population, HHRA based on each major ethnic group of the Malaysian society was also determined considering that the food consumption pattern would definitely be varied across ethnicities and age groups (children and adults). The study results showed that Zn concentrations were significantly higher (p < 0.05) in leafy vegetables than in other types of vegetables. However, the target hazard quotient (THQ) values were all found to be < 1.0. Therefore, based on the Malaysian ethnicities and age groups with their respective vegetable consumption patterns, the results indicated insignificant noncarcinogenic human health risk of Zn via oral consumption of vegetables by the Malaysian population. As a metric of measurement of HHRA, a comparison of THQ values could yield previously unreported insights into HHRA differences among the compared populations. A comparison of THQ values among the consumer groups indicated higher HHR for Chinese Malaysians and children due to their higher vegetable consumption and lower body weight, respectively. A comparison the Zn intakes of all the consumer groups with the recommended nutrient intakes indicated that the oral consumption of the vegetable species collected in this study would not result in Zn-related hazards and would not be able to fulfil the Zn dietary need of the individual consumer.
  4. Yap CK, Chew W, Al-Mutairi KA, Nulit R, Ibrahim MH, Wong KW, et al.
    Biology (Basel), 2021 Dec 21;11(1).
    PMID: 35053001 DOI: 10.3390/biology11010002
    Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24-12.43 for Cd (mean: 1.94), 4.66-2363 for Cu (mean: 228), 2576-116,344 for Fe (mean: 32,618), 2.38-75.67 for Ni (mean: 16.04), 7.22-969 for Pb (mean: 115) and 11.03-3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as "very high ecological risk". For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links