Displaying 1 publication

Abstract:
Sort:
  1. Bako Sunday Samuel, Mohd Bakri Adam, Anwar Fitrianto
    MATEMATIKA, 2018;34(2):365-380.
    MyJurnal
    Recent studies have shown that independent identical distributed Gaussian
    random variables is not suitable for modelling extreme values observed during extremal
    events. However, many real life data on extreme values are dependent and stationary
    rather than the conventional independent identically distributed data. We propose a stationary
    autoregressive (AR) process with Gumbel distributed innovation and characterise
    the short-term dependence among maxima of an (AR) process over a range of sample
    sizes with varying degrees of dependence. We estimate the maximum likelihood of the
    parameters of the Gumbel AR process and its residuals, and evaluate the performance
    of the parameter estimates. The AR process is fitted to the Gumbel-generalised Pareto
    (GPD) distribution and we evaluate the performance of the parameter estimates fitted
    to the cluster maxima and the original series. Ignoring the effect of dependence leads to
    overestimation of the location parameter of the Gumbel-AR (1) process. The estimate
    of the location parameter of the AR process using the residuals gives a better estimate.
    Estimate of the scale parameter perform marginally better for the original series than the
    residual estimate. The degree of clustering increases as dependence is enhance for the AR
    process. The Gumbel-AR(1) fitted to the threshold exceedances shows that the estimates
    of the scale and shape parameters fitted to the cluster maxima perform better as sample
    size increases, however, ignoring the effect of dependence lead to an underestimation of
    the parameter estimates of the scale parameter. The shape parameter of the original
    series gives a superior estimate compare to the threshold excesses fitted to the Gumbel
    distributed Generalised Pareto ditribution.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links