Affiliations 

  • 1 Universiti Putra Malaysia
  • 2 Kaduna State University
MATEMATIKA, 2018;34(2):365-380.
MyJurnal

Abstract

Recent studies have shown that independent identical distributed Gaussian
random variables is not suitable for modelling extreme values observed during extremal
events. However, many real life data on extreme values are dependent and stationary
rather than the conventional independent identically distributed data. We propose a stationary
autoregressive (AR) process with Gumbel distributed innovation and characterise
the short-term dependence among maxima of an (AR) process over a range of sample
sizes with varying degrees of dependence. We estimate the maximum likelihood of the
parameters of the Gumbel AR process and its residuals, and evaluate the performance
of the parameter estimates. The AR process is fitted to the Gumbel-generalised Pareto
(GPD) distribution and we evaluate the performance of the parameter estimates fitted
to the cluster maxima and the original series. Ignoring the effect of dependence leads to
overestimation of the location parameter of the Gumbel-AR (1) process. The estimate
of the location parameter of the AR process using the residuals gives a better estimate.
Estimate of the scale parameter perform marginally better for the original series than the
residual estimate. The degree of clustering increases as dependence is enhance for the AR
process. The Gumbel-AR(1) fitted to the threshold exceedances shows that the estimates
of the scale and shape parameters fitted to the cluster maxima perform better as sample
size increases, however, ignoring the effect of dependence lead to an underestimation of
the parameter estimates of the scale parameter. The shape parameter of the original
series gives a superior estimate compare to the threshold excesses fitted to the Gumbel
distributed Generalised Pareto ditribution.