Displaying publications 1 - 20 of 422 in total

Abstract:
Sort:
  1. Qaiyum S, Aziz I, Hasan MH, Khan AI, Almalawi A
    Sensors (Basel), 2020 Jun 05;20(11).
    PMID: 32517018 DOI: 10.3390/s20113210
    Data Streams create new challenges for fuzzy clustering algorithms, specifically Interval Type-2 Fuzzy C-Means (IT2FCM). One problem associated with IT2FCM is that it tends to be sensitive to initialization conditions and therefore, fails to return global optima. This problem has been addressed by optimizing IT2FCM using Ant Colony Optimization approach. However, IT2FCM-ACO obtain clusters for the whole dataset which is not suitable for clustering large streaming datasets that may be coming continuously and evolves with time. Thus, the clusters generated will also evolve with time. Additionally, the incoming data may not be available in memory all at once because of its size. Therefore, to encounter the challenges of a large data stream environment we propose improvising IT2FCM-ACO to generate clusters incrementally. The proposed algorithm produces clusters by determining appropriate cluster centers on a certain percentage of available datasets and then the obtained cluster centroids are combined with new incoming data points to generate another set of cluster centers. The process continues until all the data are scanned. The previous data points are released from memory which reduces time and space complexity. Thus, the proposed incremental method produces data partitions comparable to IT2FCM-ACO. The performance of the proposed method is evaluated on large real-life datasets. The results obtained from several fuzzy cluster validity index measures show the enhanced performance of the proposed method over other clustering algorithms. The proposed algorithm also improves upon the run time and produces excellent speed-ups for all datasets.
    Matched MeSH terms: Cluster Analysis
  2. Naeimi S, Ghafghazi H, Chow CO, Ishii H
    Sensors (Basel), 2012;12(6):7350-409.
    PMID: 22969350 DOI: 10.3390/s120607350
    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.
    Matched MeSH terms: Cluster Analysis
  3. Tengku M.T. Sembok
    Imaging Retrieval is a retrieval strategy which is based on modal logic where documents are viewed as possible worlds which are related through an accessibility relation established using their similarity/dissimilarity coefficients. With these accessibility relation documents are grouped into clusters based on a nearest neighbour concept. The work reported in this paper sets out to implement and evaluate the imaging retrieval as a relevance feedback retrieval with nearest neighbour clusters. The retrieval is implemented in two variations: a one-stage and a multi-stage retrieval. The results obtained from the experiments are enough to show the viability and validity of this strategy and to support it as something worth looking into further.
    Capaian Imejan ialah satu strategi capaian yang berasaskan mantik yang menganggap dukumen sebagai dunia mungkin yang berkaitan. Kaitan antara dokumen ialah hubungan capaian yang dilahirkan dengan menggunakan koefisien persamaan. Dengan hubungan capaian ini dokumen boleh dikumpulkan dalam kelompok berdasarkan konsep jiran terdekat. Kerja yang dilaporkan dalam kertas ini bertujuan untuk melaksanakan dan menilai capaian imejan sebagai capaian kerelevanan bermaklum balas dengan kelompok jiran terdekat. Capaian tersebut dilaksanakan dalam dua bentuk: capaian satu tahap dan multi tahap. Hasil yang diperolehi dari eksperimen adalah mencukupi untuk menunjukkan keupayaan dan kesahan strategi ini dan memberi sokongan sebagai sesuatu yang patut dikaji dengan lebih mendalam.
    Matched MeSH terms: Cluster Analysis
  4. Nurul Hidayah Sadikon, Ibrahim Mohamed, Dharini Pathmanathan, Adriana Irawati Nur Ibrahim
    Sains Malaysiana, 2018;47:1319-1326.
    A cylindrical data set consists of circular and linear variables. We focus on developing an outlier detection procedure
    for cylindrical regression model proposed by Johnson and Wehrly (1978) based on the k-nearest neighbour approach.
    The procedure is applied based on the residuals where the distance between two residuals is measured by the Euclidean
    distance. This procedure can be used to detect single or multiple outliers. Cut-off points of the test statistic are generated
    and its performance is then evaluated via simulation. For illustration, we apply the test on the wind data set obtained
    from the Malaysian Meteorological Department.
    Matched MeSH terms: Cluster Analysis
  5. Ling L, Huang L, Wang J, Zhang L, Wu Y, Jiang Y, et al.
    Interdiscip Sci, 2023 Dec;15(4):560-577.
    PMID: 37160860 DOI: 10.1007/s12539-023-00570-2
    Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
    Matched MeSH terms: Cluster Analysis
  6. Zolhavarieh S, Aghabozorgi S, Teh YW
    ScientificWorldJournal, 2014;2014:312521.
    PMID: 25140332 DOI: 10.1155/2014/312521
    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.
    Matched MeSH terms: Cluster Analysis*
  7. Amini A, Saboohi H, Wah TY, Herawan T
    ScientificWorldJournal, 2014;2014:926020.
    PMID: 25110753 DOI: 10.1155/2014/926020
    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
    Matched MeSH terms: Cluster Analysis*
  8. Aghabozorgi S, Ying Wah T, Herawan T, Jalab HA, Shaygan MA, Jalali A
    ScientificWorldJournal, 2014;2014:562194.
    PMID: 24982966 DOI: 10.1155/2014/562194
    Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
    Matched MeSH terms: Cluster Analysis
  9. Saeed F, Salim N, Abdo A
    Int J Comput Biol Drug Des, 2014 01 09;7(1):31-44.
    PMID: 24429501 DOI: 10.1504/IJCBDD.2014.058584
    Many types of clustering techniques for chemical structures have been used in the literature, but it is known that any single method will not always give the best results for all types of applications. Recent work on consensus clustering methods is motivated because of the successes of combining multiple classifiers in many areas and the ability of consensus clustering to improve the robustness, novelty, consistency and stability of individual clusterings. In this paper, the Cluster-based Similarity Partitioning Algorithm (CSPA) was examined for improving the quality of chemical structures clustering. The effectiveness of clustering was evaluated based on the ability to separate active from inactive molecules in each cluster and the results were compared with the Ward's clustering method. The chemical dataset MDL Drug Data Report (MDDR) database was used for experiments. The results, obtained by combining multiple clusterings, showed that the consensus clustering method can improve the robustness, novelty and stability of chemical structures clustering.
    Matched MeSH terms: Cluster Analysis
  10. Bako Sunday Samuel, Mohd Bakri Adam, Anwar Fitrianto
    MATEMATIKA, 2018;34(2):365-380.
    MyJurnal
    Recent studies have shown that independent identical distributed Gaussian
    random variables is not suitable for modelling extreme values observed during extremal
    events. However, many real life data on extreme values are dependent and stationary
    rather than the conventional independent identically distributed data. We propose a stationary
    autoregressive (AR) process with Gumbel distributed innovation and characterise
    the short-term dependence among maxima of an (AR) process over a range of sample
    sizes with varying degrees of dependence. We estimate the maximum likelihood of the
    parameters of the Gumbel AR process and its residuals, and evaluate the performance
    of the parameter estimates. The AR process is fitted to the Gumbel-generalised Pareto
    (GPD) distribution and we evaluate the performance of the parameter estimates fitted
    to the cluster maxima and the original series. Ignoring the effect of dependence leads to
    overestimation of the location parameter of the Gumbel-AR (1) process. The estimate
    of the location parameter of the AR process using the residuals gives a better estimate.
    Estimate of the scale parameter perform marginally better for the original series than the
    residual estimate. The degree of clustering increases as dependence is enhance for the AR
    process. The Gumbel-AR(1) fitted to the threshold exceedances shows that the estimates
    of the scale and shape parameters fitted to the cluster maxima perform better as sample
    size increases, however, ignoring the effect of dependence lead to an underestimation of
    the parameter estimates of the scale parameter. The shape parameter of the original
    series gives a superior estimate compare to the threshold excesses fitted to the Gumbel
    distributed Generalised Pareto ditribution.
    Matched MeSH terms: Cluster Analysis
  11. Muhammad Danial Abu Hasan, Zair Asrar Ahmad, Mohd Salman Leong, Lim, Meng Hee
    MyJurnal
    The present paper deals with the novel approach for clustering using the image feature of stabilization diagram for automated operational modal analysis in parametric model which is stochastic subspace identification (SSI)-COV. The evolution of automated operational modal analysis (OMA) is not an easy task, since traditional methods of modal analysis require a large amount of intervention by an expert user. The stabilization diagram and clustering tools are introduced to autonomously distinguish physical poles from noise (spurious) poles which can neglect any user interaction. However, the existing clustering algorithms require at least one user-defined parameter, the maximum within-cluster distance between representations of the same physical mode from different system orders and the supplementary adaptive approaches have to be employed to optimize the selection of cluster validation criteria which will lead to high demanding computational effort. The developed image clustering process is based on the input image of the stabilization diagram that has been generated and displayed separately into a certain interval frequency. and standardized image features in MATLAB was applied to extract the image features of each generated image of stabilisation diagrams. Then, the generated image feature extraction of stabilization diagrams was used to plot image clustering diagram and fixed defined threshold was set for the physical modes classification. The application of image clustering has proven to provide a reliable output results which can effectively identify physical modes in stabilization diagrams using image feature extraction even for closely spaced modes without the need of any calibration or user-defined parameter at start up and any supplementary adaptive approach for cluster validation criteria.
    Matched MeSH terms: Cluster Analysis
  12. Farrukh Mukhamedov
    MyJurnal
    In the present paper we provide a construction of Quantum Markov chain on a Cayley tree. Moreover, we give a concrete example of such chains, which is shift invariant and has the clustering property
    Matched MeSH terms: Cluster Analysis
  13. Nurul Adzlyana Mohd Saadon, Rosma Mohd Dom, Nurazzah Abd Rahman
    MyJurnal
    Clustering refers to reducing selected features involved in determining the clusters. Raw data might come with a lot of features, including unimportant ones. A hybrid similarity measure (discovered in 2014) used in selecting features can be improvised as it might select all the attributes, including insignificant ones. This paper suggests Fuzzy Lambda-Max to be used as a feature selection method since Lambda-Max is normally used in ranking of alternatives. A set of AIDS data is used to measure the performance. Results show that Fuzzy Lambda-Max has the ability to determine criteria weights and ranking the criteria. Hence, feature selection can be done by choosing only the important criteria.
    Matched MeSH terms: Cluster Analysis
  14. Gharaei N, Abu Bakar K, Mohd Hashim SZ, Hosseingholi Pourasl A, Siraj M, Darwish T
    Sensors (Basel), 2017 Aug 11;17(8).
    PMID: 28800121 DOI: 10.3390/s17081858
    Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.
    Matched MeSH terms: Cluster Analysis
  15. Sriram S, Natiq H, Rajagopal K, Krejcar O, Krejcar O
    Math Biosci Eng, 2023 Jan;20(2):2908-2919.
    PMID: 36899564 DOI: 10.3934/mbe.2023137
    Investigating the effect of changes in neuronal connectivity on the brain's behavior is of interest in neuroscience studies. Complex network theory is one of the most capable tools to study the effects of these changes on collective brain behavior. By using complex networks, the neural structure, function, and dynamics can be analyzed. In this context, various frameworks can be used to mimic neural networks, among which multi-layer networks are a proper one. Compared to single-layer models, multi-layer networks can provide a more realistic model of the brain due to their high complexity and dimensionality. This paper examines the effect of changes in asymmetry coupling on the behaviors of a multi-layer neuronal network. To this aim, a two-layer network is considered as a minimum model of left and right cerebral hemispheres communicated with the corpus callosum. The chaotic model of Hindmarsh-Rose is taken as the dynamics of the nodes. Only two neurons of each layer connect two layers of the network. In this model, it is assumed that the layers have different coupling strengths, so the effect of each coupling change on network behavior can be analyzed. As a result, the projection of the nodes is plotted for several coupling strengths to investigate how the asymmetry coupling influences the network behaviors. It is observed that although no coexisting attractor is present in the Hindmarsh-Rose model, an asymmetry in couplings causes the emergence of different attractors. The bifurcation diagrams of one node of each layer are presented to show the variation of the dynamics due to coupling changes. For further analysis, the network synchronization is investigated by computing intra-layer and inter-layer errors. Calculating these errors shows that the network can be synchronized only for large enough symmetric coupling.
    Matched MeSH terms: Cluster Analysis
  16. Karimi A, Afsharfarnia A, Zarafshan F, Al-Haddad SA
    ScientificWorldJournal, 2014;2014:432952.
    PMID: 25114965 DOI: 10.1155/2014/432952
    The stability of clusters is a serious issue in mobile ad hoc networks. Low stability of clusters may lead to rapid failure of clusters, high energy consumption for reclustering, and decrease in the overall network stability in mobile ad hoc network. In order to improve the stability of clusters, weight-based clustering algorithms are utilized. However, these algorithms only use limited features of the nodes. Thus, they decrease the weight accuracy in determining node's competency and lead to incorrect selection of cluster heads. A new weight-based algorithm presented in this paper not only determines node's weight using its own features, but also considers the direct effect of feature of adjacent nodes. It determines the weight of virtual links between nodes and the effect of the weights on determining node's final weight. By using this strategy, the highest weight is assigned to the best choices for being the cluster heads and the accuracy of nodes selection increases. The performance of new algorithm is analyzed by using computer simulation. The results show that produced clusters have longer lifetime and higher stability. Mathematical simulation shows that this algorithm has high availability in case of failure.
    Matched MeSH terms: Cluster Analysis*
  17. Saeed F, Ahmed A, Shamsir MS, Salim N
    J Comput Aided Mol Des, 2014 Jun;28(6):675-84.
    PMID: 24830925 DOI: 10.1007/s10822-014-9750-2
    The cluster-based compound selection is used in the lead identification process of drug discovery and design. Many clustering methods have been used for chemical databases, but there is no clustering method that can obtain the best results under all circumstances. However, little attention has been focused on the use of combination methods for chemical structure clustering, which is known as consensus clustering. Recently, consensus clustering has been used in many areas including bioinformatics, machine learning and information theory. This process can improve the robustness, stability, consistency and novelty of clustering. For chemical databases, different consensus clustering methods have been used including the co-association matrix-based, graph-based, hypergraph-based and voting-based methods. In this paper, a weighted cumulative voting-based aggregation algorithm (W-CVAA) was developed. The MDL Drug Data Report (MDDR) benchmark chemical dataset was used in the experiments and represented by the AlogP and ECPF_4 descriptors. The results from the clustering methods were evaluated by the ability of the clustering to separate biologically active molecules in each cluster from inactive ones using different criteria, and the effectiveness of the consensus clustering was compared to that of Ward's method, which is the current standard clustering method in chemoinformatics. This study indicated that weighted voting-based consensus clustering can overcome the limitations of the existing voting-based methods and improve the effectiveness of combining multiple clusterings of chemical structures.
    Matched MeSH terms: Cluster Analysis*
  18. Saeed F, Salim N, Abdo A
    J Chem Inf Model, 2013 May 24;53(5):1026-34.
    PMID: 23581471 DOI: 10.1021/ci300442u
    The goal of consensus clustering methods is to find a consensus partition that optimally summarizes an ensemble and improves the quality of clustering compared with single clustering algorithms. In this paper, an enhanced voting-based consensus method was introduced and compared with other consensus clustering methods, including co-association-based, graph-based, and voting-based consensus methods. The MDDR and MUV data sets were used for the experiments and were represented by three 2D fingerprints: ALOGP, ECFP_4, and ECFC_4. The results were evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster using four criteria: F-measure, Quality Partition Index (QPI), Rand Index (RI), and Fowlkes-Mallows Index (FMI). The experiments suggest that the consensus methods can deliver significant improvements for the effectiveness of chemical structures clustering.
    Matched MeSH terms: Cluster Analysis
  19. Abubaker A, Baharum A, Alrefaei M
    PLoS One, 2015;10(7):e0130995.
    PMID: 26132309 DOI: 10.1371/journal.pone.0130995
    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.
    Matched MeSH terms: Cluster Analysis
  20. Mustapha I, Mohd Ali B, Rasid MF, Sali A, Mohamad H
    Sensors (Basel), 2015;15(8):19783-818.
    PMID: 26287191 DOI: 10.3390/s150819783
    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
    Matched MeSH terms: Cluster Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links