Silver Oxide (Ag2O)-Guar gum nanocomposite was fabricated via a simple sonochemical co-precipitation method. The obtained photocatalyst was characterized with various techniques such as X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy along with energy dispersion X-ray spectroscopy. The findings have demonstrated that Ag2O nanoparticles are spherical of 5-20 nm and were dispersed on the surface of polysaccharide guar gum to form Ag2O-guar gum nanocomposite. The as-synthesized nanocomposite was enacted as a competent photocatalyst for the reduction of nitrobenzene and oxidation of benzyl alchohol. The conversion efficiency for the reduction of nitrobenzene was 96 % with the addition of sodium borohydride, and the conversion of benzyl alcohol was 98 %. The highly efficient photocatalytic activity was due to the exceedingly dispersed Ag2O-guar gum nanocomposite where effective separation rate of energy driven electron-hole pairs and stronger light absorption occurs. The possible mechanism of the reactions was implicated in understanding the active species involved in the photocatalytic study.