Displaying all 2 publications

Abstract:
Sort:
  1. Roberts JA, Sime F, Lipman J, Hernández-Mitre MP, Baptista JP, Brüggemann RJ, et al.
    Crit Care Resusc, 2023 Mar;25(1):1-5.
    PMID: 37876989 DOI: 10.1016/j.ccrj.2023.04.002
    OBJECTIVE: To describe whether contemporary dosing of antifungal drugs achieves therapeutic exposures in critically ill patients that are associated with optimal outcomes. Adequate antifungal therapy is a key determinant of survival of critically ill patients with fungal infections. Critical illness can alter an antifungal agents' pharmacokinetics, increasing the risk of inappropriate antifungal exposure that may lead to treatment failure and/or toxicity.

    DESIGN SETTING AND PARTICIPANTS: This international, multicentre, observational pharmacokinetic study will comprise adult critically ill patients prescribed antifungal agents including fluconazole, voriconazole, posaconazole, isavuconazole, caspofungin, micafungin, anidulafungin, and amphotericin B for the treatment or prophylaxis of invasive fungal disease. A minimum of 12 patients are targeted for enrolment for each antifungal agent, across 12 countries and 30 intensive care units to perform descriptive pharmacokinetics. Pharmacokinetic sampling will occur during two dosing intervals (occasions): firstly, between days 1 and 3, and secondly, between days 4 and 7 of the antifungal course, collecting three samples per occasion. Patients' demographic and clinical data will be collected.

    MAIN OUTCOME MEASURES: The primary endpoint of the study is attainment of pharmacokinetic/pharmacodynamic target exposures that are associated with optimal efficacy. Thirty-day mortality will also be measured.

    RESULTS AND CONCLUSIONS: This study will describe whether contemporary antifungal drug dosing achieves drug exposures associated with optimal outcomes. Data will also be used for the development of antifungal dosing algorithms for critically ill patients. Optimised drug dosing should be considered a priority for improving clinical outcomes for critically ill patients with fungal infections.

  2. Roberts JA, Joynt GM, Lee A, Choi G, Bellomo R, Kanji S, et al.
    Clin Infect Dis, 2021 04 26;72(8):1369-1378.
    PMID: 32150603 DOI: 10.1093/cid/ciaa224
    BACKGROUND: The optimal dosing of antibiotics in critically ill patients receiving renal replacement therapy (RRT) remains unclear. In this study, we describe the variability in RRT techniques and antibiotic dosing in critically ill patients receiving RRT and relate observed trough antibiotic concentrations to optimal targets.

    METHODS: We performed a prospective, observational, multinational, pharmacokinetic study in 29 intensive care units from 14 countries. We collected demographic, clinical, and RRT data. We measured trough antibiotic concentrations of meropenem, piperacillin-tazobactam, and vancomycin and related them to high- and low-target trough concentrations.

    RESULTS: We studied 381 patients and obtained 508 trough antibiotic concentrations. There was wide variability (4-8-fold) in antibiotic dosing regimens, RRT prescription, and estimated endogenous renal function. The overall median estimated total renal clearance (eTRCL) was 50 mL/minute (interquartile range [IQR], 35-65) and higher eTRCL was associated with lower trough concentrations for all antibiotics (P < .05). The median (IQR) trough concentration for meropenem was 12.1 mg/L (7.9-18.8), piperacillin was 78.6 mg/L (49.5-127.3), tazobactam was 9.5 mg/L (6.3-14.2), and vancomycin was 14.3 mg/L (11.6-21.8). Trough concentrations failed to meet optimal higher limits in 26%, 36%, and 72% and optimal lower limits in 4%, 4%, and 55% of patients for meropenem, piperacillin, and vancomycin, respectively.

    CONCLUSIONS: In critically ill patients treated with RRT, antibiotic dosing regimens, RRT prescription, and eTRCL varied markedly and resulted in highly variable antibiotic concentrations that failed to meet therapeutic targets in many patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links