Displaying all 3 publications

Abstract:
Sort:
  1. Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, et al.
    Nat Commun, 2025 Mar 25;16(1):2893.
    PMID: 40133336 DOI: 10.1038/s41467-025-58319-y
    Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
  2. Akyüz F, An YK, Begun J, Aniwan S, Bui HH, Chan W, et al.
    Intest Res, 2025 Jan;23(1):37-55.
    PMID: 39492666 DOI: 10.5217/ir.2024.00089
    The lack of clear definition and classification for "moderate ulcerative colitis (UC)" creates ambiguity regarding the suitability of step-up versus top-down treatment approaches. In this paper, experts address crucial gaps in assessing and managing moderate UC. The Asia-Pacific, Middle East, and Africa Inflammatory Bowel Disease Coalition comprised 24 experts who convened to share, discuss and vote electronically on management recommendations for moderate UC. Experts emphasized that the goal of treating UC is to attain clinical, biomarker, and endoscopic remission using cost-effective strategies such as 5-aminosalicylates (5-ASAs), well-tolerated therapy that can be optimized to improve outcomes. Experts agreed that 5-ASA therapy could be optimized by maximizing dosage (4 g/day for induction of remission), combining oral and topical administration, extending treatment duration beyond 8 weeks, and enhancing patient adherence through personalized counselling and reduced pill burden. Treatment escalation should ideally be reserved for patients with predictors of aggressive disease or those who do not respond to 5-ASA optimization. Premature treatment escalation to advanced therapies (including biologics and oral small molecules) may have long-term health and financial consequences. This paper provides consensus-based expert recommendations and a treatment algorithm, based on current evidence and practices, to assist decision-making in real-world settings.
  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links