Displaying all 2 publications

Abstract:
Sort:
  1. Beh JH, Lim TH, Lew JH, Lai JC
    Int J Biol Macromol, 2020 Oct 01;160:836-845.
    PMID: 32485260 DOI: 10.1016/j.ijbiomac.2020.05.227
    Sago pith cellulose nanofibril (SPCNF) aerogel derived from sago pith waste (SPW) was successfully produced through three consecutive steps, namely dewaxing and delignification, ultra-sonication and homogenization and freeze drying. The aerogel was characterized using field emission scanning electron microscopy (FE-SEM), Fourier-transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Results of the analyses collectively showed that lignin & hemicellulose were absent in the SPCNF aerogel product which has a high crystallinity index of 88%. The diameters of individual nanofibril constituents of the SPCNF were between 15 and 30 nm and aspect ratios >1000 were observed. The SPCNF aerogel, with a density measured at 2.1 mg/cm3, was efficient in methylene blue (MB) removal with a maximum MB adsorption of 222.2 mg/g at 20 °C. The adsorption of MB onto the SPCNF aerogel was rapid and found to follow a pseudo-second-order kinetic model with the adsorption isotherm being in congruence with the Langmuir model. The SPCNF aerogel exhibited outstanding MB removal efficacies with 5 mg and 20 mg of SPCNF capable of removing over 90% and almost 99% MB, respectively. The optimized pH value and temperature for MB adsorption were determined as pH 7 and 20 °C.
  2. Loh LT, Yew MK, Yew MC, Beh JH, Lee FW, Lim SK, et al.
    Materials (Basel), 2021 Apr 30;14(9).
    PMID: 33946348 DOI: 10.3390/ma14092337
    Oil palm shell (OPS) is an agricultural solid waste from the extraction process of palm oil. All these wastes from industry pose serious disposal issues for the environment. This research aims to promote the replacement of conventional coarse aggregates with eco-friendly OPS aggregate which offers several advantages, such as being lightweight, renewable, and domestically available. This paper evaluates the mechanical and thermal performances of renewable OPS lightweight concrete (LWC) reinforced with various type of synthetic polypropylene (SPP) fibers. Monofilament polypropylene (MPS) and barchip polypropylene straight (BPS) were added to concrete at different volume fractions (singly and hybrid) of 0%, 0.1%, 0.3% and 0.4%. All specimens were mixed by using a new mixing method with a time saving of up to 14.3% compared to conventional mixing methods. The effects of SPP fibers on the mechanical properties were investigated by compressive strength, splitting tensile strength and residual strength. The strength of the oil palm shell lightweight concrete hybrid 0.4% (OPSLWC-HYB-0.4%) mixture achieved the highest compressive strength of 29 MPa at 28 days. The inclusion of 0.3% of BPS showed a positive outcome with the lowest thermal conductivity value at 0.55 W/m °C. Therefore, the results revealed that incorporation of BPS fiber enhanced the performance of thermal conductivity tests as compared to inclusion of MPS fiber. Hence, renewable OPS LWC was proven to be a highly recommended environmentally friendly aggregate as an alternative solution to replace natural aggregates used in the concrete industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links