Tetrarhynchobothrium tenuicolle Diesing, 1850 is redescribed from the type-specimens collected from Raja clavata Linnaeus in the Adriatic Sea. T. striatum (Wagener, 1854) is redescribed from voucher specimens from the type host, Myliobatis aquila Linnaeus, from the type-locality, off Naples, Italy. The two species are very similar in tentacular armature, but are provisionally maintained as independent species, since the armature of T. tenuicolle cannot be fully described and because all available specimens of T. striatum are immature, limiting comparisons of potential differences in segment anatomy. T. setiense Dollfus, 1969 is treated as a synonym of T. striatum. Zygorhynchus borneensis n. sp. is described from Himantura uarnacoides (Bleeker) and H. pastinacoides (Bleeker) off Sabah, Malaysia. The new species is distinguished from its congeners by the very small hooks present in the basal region and by the presence of a uterine pore. The metabasal tentacular armature of Didymorhynchus southwelli Beveridge & Campbell, 1988, described for the first time, is homeoacanthous and homeomorphous in form. However, it has a basal swelling with hook rows originating on the bothrial surface and terminating on the antibothrial surface of the tentacle.
Sampling of a large number of elasmobranchs from coastal waters off Borneo revealed the presence of five new species of Dollfusiella Campbell & Beveridge, 1994 (Trypanorhyncha: Eutetrarhynchidae), namely D. angustiformis n. sp., D. hemispinosa n. sp., D. spinosa n. sp., D. imparispinis n. sp. and D. parva n. sp. Dollfusiella angustiformis n. sp. is described from the spiral intestines of four species of the dasyatid stingray genus Himantura Müller & Henle from both the Indonesian and Malaysian parts of Borneo. All the other species were obtained from Malaysian Borneo. Dollfusiella hemispinosa n. sp. is described from the spiral intestines of three species of Himantura, whereas D. spinosa n. sp. was obtained from several specimens of Pastinachus solocirostris Last, Manjaji & Yearsley (Dasyatidae) as well as from Taeniura lymma 1 (sensu Naylor et al., 2012) (Dasyatidae), Neotrygon kuhlii 2 (sensu Naylor et al., 2012) (Dasyatidae), and Glaucostegus cf. typus (sensu Naylor et al., 2012) (Rhinobatidae). Dollfusiella imparispinis n. sp. is described from the spiral intestine of a single specimen of Chiloscyllium punctatum Müller & Henle (Hemiscyllidae) from the South China Sea off Sarawak, whereas D. parva n. sp. was obtained from several species of Himantura. Specimens of the five novel taxa possess scoleces covered with enlarged microtriches, a morphological characteristic exhibited by several other congeners. However, the new species differ from all congeners by possessing unique patterns of oncotaxy as well as combinations of additional morphological features. The number of valid species within Dollfusiella is increased to 26. For this reason, a key for the species of Dollfusiella is provided. Furthermore, novel information on hosts and geographic distribution is provided for two previously described species of Dollfusiella, D. michiae (Southwell, 1929) and D. spinulifera (Beveridge & Jones, 2000). The latter species differs slightly from the original description and shows a much higher variability with regard to the lengths of the scolex and muscular bulbs and the number of testes. These variable characters subdivided specimens of D. spinulifera into relatively distinct groups. However, the specimens did not differ in their oncotaxy and are considered to represent a single variable species.
A new genus of trypanorhynch cestode is described from two species of sharks, the sliteye shark Loxodon macrorhinus Müller & Henle and the straight-tooth weasel shark Paragaleus tengi (Chen) collected in the Makassar Strait (off Indonesian Borneo) and Sulu Sea (off Malaysian Borneo). Ancipirhynchus afossalis n. g., n. sp. possesses two bothria and a heteroacanthous, heteromorphous tentacular armature with three distinctive files of hooks on the external tentacle surface but lacks prebulbar organs and gland cells within the tentacular bulbs. The hook arrangement of alternating files on the external surface of the tentacle resembles that seen in the superfamily Otobothrioidea Dollfus, 1942 in the genus Fossobothrium Beveridge & Campbell, 2005. However, the new species lacks the defining characteristic of this group, i.e. the paired bothrial pits. A Bayesian inference (BI) analysis of 37 LSU sequences of trypanorhynchs from three superfamilies provided evidence supporting the taxonomic placement of Ancipirhynchus afossalis n. g., n. sp. within the Otobothrioidea.