Displaying all 3 publications

Abstract:
Sort:
  1. Ali O, Ishak MK, Bhatti MKL
    PeerJ Comput Sci, 2021;7:e659.
    PMID: 34541307 DOI: 10.7717/peerj-cs.659
    Over the last decade, the Internet of Things (IoT) domain has grown dramatically, from ultra-low-power hardware design to cloud-based solutions, and now, with the rise of 5G technology, a new horizon for edge computing on IoT devices will be introduced. A wide range of communication technologies has steadily evolved in recent years, representing a diverse range of domain areas and communication specifications. Because of the heterogeneity of technology and interconnectivity, the true realisation of the IoT ecosystem is currently hampered by multiple dynamic integration challenges. In this context, several emerging IoT domains necessitate a complete re-modeling, design, and standardisation from the ground up in order to achieve seamless IoT ecosystem integration. The Internet of Nano-Things (IoNT), Internet of Space-Things (IoST), Internet of Underwater-Things (IoUT) and Social Internet of Things (SIoT) are investigated in this paper with a broad future scope based on their integration and ability to source other IoT domains by highlighting their application domains, state-of-the-art research, and open challenges. To the best of our knowledge, there is little or no information on the current state of these ecosystems, which is the motivating factor behind this article. Finally, the paper summarises the integration of these ecosystems with current IoT domains and suggests future directions for overcoming the challenges.
  2. Ali O, Ishak MK, Ooi CA, Bhatti MKL
    R Soc Open Sci, 2022 Feb;9(2):210870.
    PMID: 35127112 DOI: 10.1098/rsos.210870
    Wireless sensor networks (WSN) are commonly used in remote environments for monitoring and sensing. These devices are typically powered by batteries, the performance of which varies depending on environmental (such as temperature and humidity) as well as operational conditions (discharge rate and state-of-charge, SOC). As a result, assessing their technical viability for WSN applications requires performance evaluation based on the aforementioned stimuli. This paper proposes an efficient method for examining battery performance parameters such as capacity, open-circuit voltage (OCV) and SOC. Four battery types (lithium-ion, lithium-polymer, nickel-metal hydride and alkaline) were subjected to IEEE 802.15.4 protocol-based discharge rates to record the discharge characteristics. Furthermore, the combined effect of discharge rates on battery surface temperature and OCV variations was investigated. Shorter relaxation times (4-8 h) were observed in lithium-based batteries, resulting in faster energy recovery while maintaining rated capacity. It was observed that nearly 80% of the voltage region was flat, with minor voltage variations during the discharge cycle. Furthermore, lithium-based batteries experienced negligible changes in surface temperatures (approx. 0.03°C) with respect to discharge rates, making them the best battery choice for low-power applications such as WSNs.
  3. Ali O, Ishak MK, Bhatti MKL, Khan I, Kim KI
    Sensors (Basel), 2022 Jan 27;22(3).
    PMID: 35161740 DOI: 10.3390/s22030995
    The Internet of Things (IoT) is an extensive network of heterogeneous devices that provides an array of innovative applications and services. IoT networks enable the integration of data and services to seamlessly interconnect the cyber and physical systems. However, the heterogeneity of devices, underlying technologies and lack of standardization pose critical challenges in this domain. On account of these challenges, this research article aims to provide a comprehensive overview of the enabling technologies and standards that build up the IoT technology stack. First, a layered architecture approach is presented where the state-of-the-art research and open challenges are discussed at every layer. Next, this research article focuses on the role of middleware platforms in IoT application development and integration. Furthermore, this article addresses the open challenges and provides comprehensive steps towards IoT stack optimization. Finally, the interfacing of Fog/Edge Networks to IoT technology stack is thoroughly investigated by discussing the current research and open challenges in this domain. The main scope of this study is to provide a comprehensive review into IoT technology (the horizontal fabric), the associated middleware and networks required to build future proof applications (the vertical markets).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links