Displaying all 3 publications

Abstract:
Sort:
  1. Billah MM, Bhuiyan MKA, Islam MA, Das J, Hoque AR
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15347-15363.
    PMID: 34989993 DOI: 10.1007/s11356-021-18305-5
    Coastal wetlands including salt marshes are among the most productive ecosystems on Earth. They are known for improving the quality of coastal water and provisioning coastal fisheries. However, this ecosystem is under potential threat due to urban coastal land reclamation, limited sediment supply, increased nutrient/eutrophication, and sea level rise. Therefore, restoration efforts to protect the degraded salt marsh habitat are considerably increasing worldwide. In this paper, we present an overview of salt marsh restoration techniques and success indicators. Published scientific literature in English language was collected by searching the most relevant keywords from popular search engines, namely, Google Scholar, Scopus, and Mendeley to get the information about salt marsh restoration techniques and success indicators. This study comprehensively reviewed data from 78 peer-reviewed papers. Results indicated that much of the salt marsh was restored through assisted abiotic strategies (e.g., recovery of tidal exchange, managed realignment, and sediment level amendment). A total of 214 indicators were found, spanning over six major ecological attributes such as structural diversity, ecosystem functions, physical conditions, species composition, external exchange, and absence of threat. Author keywords analysis revealed several hotspots for recent research (e.g., 16 s rRNA, fungi, microbial communities, carbon accumulation, and blue carbon). This paper proposes a model for restoring degraded salt marsh, as well as tracking their success. The information presented here will assist the marine ecosystem restoration practitioners in getting a comprehensive understanding of salt marsh restoration success evaluation.
  2. Hasan M, Hossain MM, Abrarin S, Kormoker T, Billah MM, Bhuiyan MKA, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(45):100828-100844.
    PMID: 37644270 DOI: 10.1007/s11356-023-29491-9
    Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links