Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products were named JPUA-TDI and JPUA-IPDI, respectively. The success of the stepwise reactions of the resins was confirmed using 1H nuclear magnetic resonance (NMR) spectroscopy to support the Fourier-transform infrared (FTIR) spectroscopy analysis that was reported in the previous study. For JPUA-TDI, the presence of a signal at 7.94 ppm evidenced the possible side reactions between urethane linkages with secondary amine that resulted in an aryl-urea group (Ar-NH-COO-). Meanwhile, the peak of 2.89 ppm was assigned to the α-position of methylene to the carbamate (-CH2NHCOO) group in the JPUA-IPDI. From the rheological study, JO and JPUA-IPDI in pure form were classified as Newtonian fluids, while JPUA-TDI showed non-Newtonian behaviour with pseudoplastic or shear thinning behaviour at room temperature. At elevated temperatures, the JO, JPUA-IPDI mixture and JPUA-TDI mixture exhibited reductions in viscosity and shear stress as the shear rate increased. The JO and JPUA-IPDI mixture maintained Newtonian fluid behaviour at all temperature ranges. Meanwhile, the JPUA-TDI mixture showed shear thickening at 25 °C and shear thinning at 40 °C, 60 °C and 80 °C. The master curve graph based on the shear rate for the JO, JPUA-TDI mixture and JPUA-IPDI mixture at 25 °C, 40 °C, 60 °C and 80 °C was developed as a fluid behaviour reference for future storage and processing conditions during the encapsulation process. The encapsulation process can be conducted to fabricate a self-healing coating based on a microcapsule triggered either by air or ultra-violet (UV) radiation.
Toward attaining a sustainability and eco-friendly process, a green and low-cost solvent-brine (NaCl solution) is proposed, as microwave-assisted extraction (MAE) technique solvent to extract lipids from microalgae Nannochloropsis sp. The effect of NaCl concentration on the quantity and quality of the extracted lipid was assessed, while MAE parameters were optimized using response surface methodology (RSM). The content of fatty acid methyl esters (FAMEs) in the lipid was analyzed by using a gas chromatography-flame ionization detector (GC/FID). The highest lipid yield (16.1%) was obtained using 10% (w/v) brine at optimum extraction parameters of 5% (w/v) solid loading, 100 °C, and 30 min. The lipid extraction yield via optimized MAE-brine technique was thrice better than that Soxhlet extraction did and only 2% less than Bligh and Dyer (B&D) lipid extraction, which utilized harmful solvents. The proposed MAE-brine technique offered better quality lipids containing the highest amount of polyunsaturated fatty acids (PUFA) (44.5%) and omega-3 fatty acids (FAs) (43%). Hence, the MAE-brine solvent technique appears to be a promising extraction method for cheaper, greener, and faster extraction of a high-quality lipid for specialty food applications.
The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick's Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.
The development of bio-polyol from vegetable oil and its derivatives is gaining much interest from polyurethane industries and academia. In view of this, the availability of methyl oleate derived from palm oil, which is aimed at biodiesel production, provides an excellent feedstock to produce bio-polyol for polyurethane applications. In this recent study, response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) was used to optimise the reaction parameters in order to obtain a maximised hydroxyl value (OHV). Three reaction parameters were selected, namely the mole ratio of epoxidised methyl oleate (EMO) to glycerol (1:5-1:10), the amount of catalyst loading (0.15-0.55%) and reaction temperature (90-150 °C) on a response variable as the hydroxyl value (OHV). The analysis of variance (ANOVA) indicated that the quadratic model was significant at 98% confidence level with (p-value > 0.0001) with an insignificant lack of fit and the regression coefficient (R2) was 0.9897. The optimum reaction conditions established by the predicted model were: 1:10 mole ratio of EMO to glycerol, 0.18% of catalyst and 120 °C reaction temperature, giving a hydroxyl value (OHV) of 306.190 mg KOH/g for the experimental value and 301.248 mg KOH/g for the predicted value. This result proves that the RSM model is capable of forecasting the relevant response. FTIR analysis was employed to monitor the changes of functional group for each synthesis and the confirmation of this finding was analysed by NMR analysis. The viscosity and average molecular weight (MW) were 513.48 mPa and 491 Da, respectively.
Recently, most of the commercial polyols used in the production of rigid polyurethane foams (RPUFs) have been derived from petrochemicals. Therefore, the introduction of modified palm oil derivatives-based polyol as a renewable material into the formulation of RPUFs is the focus of this study. A palm oil derivative-namely, methyl oleate (MO)-was successfully modified through three steps of reactions: epoxidation reaction, ring-opened with glycerol, followed by amidation reaction to produce a bio-based polyol named alkanolamide polyol. Physicochemical properties of the alkanolamide polyol were analyzed. The hydroxyl value of alkanolamide polyol was 313 mg KOH/g, which is suitable for producing RPUFs. Therefore, RPUFs were produced by replacing petrochemical polyol with alkanolamide polyol. The effects of alkanolamide polyol on the physical, mechanical and thermal properties were evaluated. The results showed that the apparent density and compressive strength increased, and cell size decreased, upon introducing alkanolamide polyol. All the RPUFs exhibited low water absorption and excellent dimensional stability. The RPUFs made with increased amounts of alkanolamide polyol showed higher thermal conductivity. Nevertheless, the thermal conductivities of RPUFs made with alkanolamide polyol are still within the range for thermal insulating materials (<0.1 W/m.K). The thermal stability of RPUFs was improved with the addition of alkanolamide polyol into the system. Thus, the RPUFs made from alkanolamide polyol are potential candidates to be used as insulation for refrigerators or freezers.