Displaying all 2 publications

Abstract:
Sort:
  1. Saffian SM, Duffull SB, Roberts RL, Tait RC, Black L, Lund KA, et al.
    Ther Drug Monit, 2016 12;38(6):677-683.
    PMID: 27855133
    BACKGROUND: A previously established Bayesian dosing tool for warfarin was found to produce biased maintenance dose predictions. In this study, we aimed (1) to determine whether the biased warfarin dose predictions previously observed could be replicated in a new cohort of patients from 2 different clinical settings, (2) to explore the influence of CYP2C9 and VKORC1 genotype on predictive performance of the Bayesian dosing tool, and (3) to determine whether the previous population used to develop the kinetic-pharmacodynamic model underpinning the Bayesian dosing tool was sufficiently different from the test (posterior) population to account for the biased dose predictions.

    METHODS: The warfarin maintenance doses for 140 patients were predicted using the dosing tool and compared with the observed maintenance dose. The impact of genotype was assessed by predicting maintenance doses with prior parameter values known to be altered by genetic variability (eg, EC50 for VKORC1 genotype). The prior population was evaluated by fitting the published kinetic-pharmacodynamic model, which underpins the Bayesian tool, to the observed data using NONMEM and comparing the model parameter estimates with published values.

    RESULTS: The Bayesian tool produced positively biased dose predictions in the new cohort of patients (mean prediction error [95% confidence interval]; 0.32 mg/d [0.14-0.5]). The bias was only observed in patients requiring ≥7 mg/d. The direction and magnitude of the observed bias was not influenced by genotype. The prior model provided a good fit to our data, which suggests that the bias was not caused by different prior and posterior populations.

    CONCLUSIONS: Maintenance doses for patients requiring ≥7 mg/d were overpredicted. The bias was not due to the influence of genotype nor was it related to differences between the prior and posterior populations. There is a need for a more mechanistic model that captures warfarin dose-response relationship at higher warfarin doses.

  2. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, et al.
    Plant Dis, 2001 Dec;85(12):1286.
    PMID: 30831796 DOI: 10.1094/PDIS.2001.85.12.1286A
    Production of tomato (Lycopersicon esculentum) in Bangladesh, Malaysia, Myanmar, Vietnam, and Laos has been severely affected by yellow leaf curl disease. Tomato leaf samples were collected from symptomatic tomato plants from farmers' fields in the five countries from 1997 to 1999. DNA was extracted from all samples, four from Vietnam, two each from Malaysia, Laos, and Myanmar, and seven from Bangladesh. Virus DNA was amplified by polymerase chain reaction (PCR) using the begomovirus-specific degenerate primer pair PAL1v 1978/PAR1c 715(1), which amplifies the top part of DNA A. All samples gave the expected 1.4-kb PCR product. The PCR product of one sample per country was cloned and sequenced. Based on the sequences of the 1.4-kb DNA products amplified by the first primer pair, specific primers were designed to complete each of the DNA A sequences. Computer-assisted sequence comparisons were performed with begomovirus sequences available in the laboratory at the Asian Vegetable Research and Development Center, Shanhua, Tainan, and in the GenBank sequence database. The five DNA species resembled DNA A of begomoviruses. For the detection of DNA B two degenerate primer pairs were used, DNABLC1/DNABLV2 and DNABLC2/DNABLV2 (DNABLC1: 5'-GTVAATGGRGTDCACTTCTG-3', DNABLC2: 5'-RGTDCACTT CTGYARGATGC-3', DNABLV2: 5'-GAGTAGTAGTGBAKGTTGCA-3'), which were specifically designed to amplify DNA B of Asian tomato geminiviruses. Only the virus associated with yellow leaf curl of tomato in Bangladesh was found to contain a DNA B component, which was detected with the DNABLC1/DNABLV2 primer pair. The DNA A sequence derived from the virus associated with tomato yellow leaf curl from Myanmar (GenBank Accession No. AF206674) showed highest sequence identity (94%) with tomato yellow leaf curl virus from Thailand (GenBank Accession No. X63015), suggesting that it is a closely related strain of this virus. The other four viruses were distinct begomoviruses, because their sequences shared less than 90% identity with known begomoviruses of tomato or other crops. The sequence derived from the virus associated with tomato yellow leaf curl from Vietnam (GenBank Accession No. AF264063) showed highest sequence identity (82%) with the virus associated with chili leaf curl from Malaysia (GenBank Accession No. AF414287), whereas the virus associated with yellow leaf curl symptoms in tomato in Bangladesh (GenBank Accession No. AF188481) had the highest sequence identity (88%) with a tobacco geminivirus from Yunnan, China (GenBank Accession No. AF240675). The sequence derived from the virus associated with tomato yellow leaf curl from Laos (GenBank Accession No. AF195782) had the highest sequence identity (88%) with the tomato begomovirus from Malaysia (GenBank Accession No. AF327436). This report provides further evidence of the great genetic diversity of tomato-infecting begomoviruses in Asia. Reference: M. R. Rojas et al. Plant Dis. 77:340, 1993.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links