This study focuses on the simulation of ethylene glycol (C2H6O2) – glycerol (C3H8O3) and ethylene glycol (C2H6O2) – calcium chloride (CaCl2) as separating agents in bioethanol production from fermentation effluent. The entire process was simulated using Aspen HYSYS V7.3 software, but the main focus is the extractive distillation where the mixture compounds were utilised. Response Surface Methodology (RSM) was used to optimise the process variables in extractive distillation column with the separating agent ethylene glycol, temperature, solvent to feed molar ratio and reflux ratio. Non-random two-liquid (NRTL) model was used for activity coefficients of mixture from Aspen properties databank. Results show that both mixture compounds values on solvent to feed molar ratio, reflux ratio and reboiler energy consumption were slightly different as separating agent temperature maintained at 80 oC and ethanol composition in distillate was 99.89 mole%. The separating agents show that better ethanolwater separation with lower energy consumption compared with a well-known single compound such as ethylene glycol. Thus, this study is important to improve extractive distillation column operating conditions by studying the effect of mixture compounds as separating agents in bioethanol production.
In this study, simulation and optimisation of the purification of bioethanol from an azeotropic mixture was done using the Aspen HYSYS and the Response Surface Methodology (RSM), respectively, to achieve an acceptable bioethanol content with minimal energy use. The objective of this study is to develop the simulation process of bioethanol production from a fermentation effluent. Additionally, the effects of parameters such as solvent temperature, number of entrainer feed stage, mass flow rate and third components of the process for production of bioethanol were studied. As bioethanol is a product of biofuel production, the main challenge facing bioethanol production is the separation of high purity ethanol. However, the separation of ethanol and water can be achieved with the addition of a suitable solvent such as 1,3-butylene glycol (13C4Diol), mixture 13C4Diol and ethylene glycol (EGlycol) and mixture 13C4Diol and glycol ethyl ether (DEG) in the extractive distillation process. For the 13C4Diol mixture, the temperature of entrainer is 90oC with 1500 kg/hr of entrainer rate, while the number of entrainer feed stage is one. The optimum conditions for mixture 13C4Diol and EGlycol require a temperature of entrainer of 90.77oC with an entrainer rate of 1500 kg/hr, while the number of entrainer feed stage is one. Lastly, for optimum conditions for the mixture 13C4Diol and DEG, the temperature of entrainer should be 90oC with an entrainer rate of 1564.04 kg/hr, while the number of entrainer feed stage is one. This study shows that process simulation and optimisation can enhance the removal of water from an azeotropic mixture.
Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.
In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2-10 mg/L), biosorbent dosages (0.3-0.7 g) and pH solution (4-9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R(2) < 0.9918.