Displaying all 2 publications

Abstract:
Sort:
  1. Booi HN, Lee MK, Fung SY, Ng ST, Tan CS, Lim KH, et al.
    Int J Med Mushrooms, 2022;24(10):1-14.
    PMID: 36374826 DOI: 10.1615/IntJMedMushrooms.2022045068
    COVID-19 infection has been a key threat to the public health system globally, with an estimated 248 million cases worldwide. COVID-19 patients are subject to a higher risk of developing chronic respiratory disorders that are closely associated with long-term disability, multi-morbidity, and premature mortality. Although there have been recent advancements in respiratory treatment regimens, there has also been increased interest in the use of medicinal mushrooms in bridging the unaddressed pathways of action within the treatment algorithms. In this review, we provide a collection of medicinal mushrooms that are beneficial in promoting respiratory health and potentially reducing COVID-19 symptoms in patients who are newly diagnosed and those who have recovered. While reviewing the use of immunomodulatory pathways, which have shown promising results in tackling side effects and post-COVID syndromes, we also provide insights into how the antioxidant elements present in medicinal mushrooms help to achieve the same results, especially in the prophylactic and therapeutic management of COVID-19 infection. To date, medicinal mushrooms are regarded as a functional food, which, however, need further quality, safety, and efficacy assessments. These requirements are also highlighted in the present review to promote the future development and application of medicinal mushrooms for better respiratory health.
  2. Booi HN, Pang LY, Lee MK, Fung SY, Ng CL, Ng ST, et al.
    J Ethnopharmacol, 2025 Jan 10;336:118727.
    PMID: 39182700 DOI: 10.1016/j.jep.2024.118727
    ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health.

    AIM OF THE STUDY: This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans.

    MATERIALS AND METHODS: A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay.

    RESULTS: Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%.

    CONCLUSIONS: These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links