Displaying all 2 publications

Abstract:
Sort:
  1. Otgontuya D, Oum S, Buckley BS, Bonita R
    BMC Public Health, 2013 Jun 05;13:539.
    PMID: 23734670 DOI: 10.1186/1471-2458-13-539
    BACKGROUND: Recent research has used cardiovascular risk scores intended to estimate "total cardiovascular disease (CVD) risk" in individuals to assess the distribution of risk within populations. The research suggested that the adoption of the total risk approach, in comparison to treatment decisions being based on the level of a single risk factor, could lead to reductions in expenditure on preventive cardiovascular drug treatment in low- and middle-income countries. So that the patient benefit associated with savings is highlighted.

    METHODS: This study used data from national STEPS surveys (STEPwise Approach to Surveillance) conducted between 2005 and 2010 in Cambodia, Malaysia and Mongolia of men and women aged 40-64 years. The study compared the differences and implications of various approaches to risk estimation at a population level using the World Health Organization/International Society of Hypertension (WHO/ISH) risk score charts. To aid interpretation and adjustment of scores and inform treatment in individuals, the charts are accompanied by practice notes about risk factors not included in the risk score calculations. Total risk was calculated amongst the populations using the charts alone and also adjusted according to these notes. Prevalence of traditional single risk factors was also calculated.

    RESULTS: The prevalence of WHO/ISH "high CVD risk" (≥20% chance of developing a cardiovascular event over 10 years) of 6%, 2.3% and 1.3% in Mongolia, Malaysia and Cambodia, respectively, is in line with recent research when charts alone are used. However, these proportions rise to 33.3%, 20.8% and 10.4%, respectively when individuals with blood pressure > = 160/100 mm/Hg and/or hypertension medication are attributed to "high risk". Of those at "moderate risk" (10- < 20% chance of developing a cardio vascular event over 10 years), 100%, 94.3% and 30.1%, respectively are affected by at least one risk-increasing factor. Of all individuals, 44.6%, 29.0% and 15.0% are affected by hypertension as a single risk factor (systolic ≥ 140 mmHg or diastolic ≥ 90 mmHg or medication).

    CONCLUSIONS: Used on a population level, cardiovascular risk scores may offer useful insights that can assist health service delivery planning. An approach based on overall risk without adjustment of specific risk factors however, may underestimate treatment needs.At the individual level, the total risk approach offers important clinical benefits. However, countries need to develop appropriate clinical guidelines and operational guidance for detection and management of CVD risk using total CVD-risk approach at different levels of health system. Operational research is needed to assess implementation issues.

  2. Moy FM, Ray A, Buckley BS, West HM
    Cochrane Database Syst Rev, 2017 Jun 11;6(6):CD009613.
    PMID: 28602020 DOI: 10.1002/14651858.CD009613.pub3
    BACKGROUND: Self-monitoring of blood glucose (SMBG) is recommended as a key component of the management plan for diabetes therapy during pregnancy. No existing systematic reviews consider the benefits/effectiveness of various techniques of blood glucose monitoring on maternal and infant outcomes among pregnant women with pre-existing diabetes. The effectiveness of the various monitoring techniques is unclear.

    OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.

    SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.

    MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.

    AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links