Displaying all 4 publications

Abstract:
Sort:
  1. Chai AWY, Lim KP, Cheong SC
    Semin Cancer Biol, 2020 04;61:71-83.
    PMID: 31542510 DOI: 10.1016/j.semcancer.2019.09.011
    Oral squamous cell carcinomas (OSCC) are a heterogeneous group of cancers arising from the mucosal lining of the oral cavity. A majority of these cancers are associated with lifestyle risk habits including smoking, excessive alcohol consumption and betel quid chewing. Cetuximab, targeting the epidermal growth factor receptor was approved for the treatment of OSCC in 2006, and remains the only molecular targeted therapy available for OSCC. Here, we reviewed the current findings from genomic analyses of OSCC and discuss how these studies inform on the biological mechanisms underlying OSCC. Exome sequencing revealed that the significantly mutated genes are mainly tumour suppressors. Mutations in FAT1, CASP8, CDKN2A, and NOTCH1 are more frequently found in OSCC when compared to non-OSCC head and neck cancers and other squamous cell carcinomas, and HRAS and PIK3CA are the only significantly mutated oncogenes. The distribution of these mutations also differs in populations with distinct risk habits. Gene expression-based molecular classification showed that OSCC can be divided into distinct subtypes and these have a preferential response to different types of therapies, suggesting that these classifications could have clinical implications. More recently, with the approval of checkpoint inhibitors for the treatment of cancers including OSCC, genomics studies also dissected the genetic signatures of the immune compartment to delineate immune-active and -exhausted subtypes that could inform on the immune status of OSCC patients and guide the development of novel therapies to improve response to immunotherapy. Taken together, genomics studies are informing on the biology of both the epithelial and stromal compartments underlying OSCC development, and we discuss the opportunities and challenges in using these to derive clinical benefit for OSCC patients.
  2. Chai AWY, Tan AC, Cheong SC
    Sci Rep, 2021 12 14;11(1):23933.
    PMID: 34907286 DOI: 10.1038/s41598-021-03418-1
    Effective treatment options for head and neck squamous cell carcinoma (HNSCC) are currently lacking. We exploited the drug response and genomic data of the 28 HNSCC cell lines, screened with 4,518 compounds, from the PRISM repurposing dataset to uncover repurposing drug candidates for HNSCC. A total of 886 active compounds, comprising of 418 targeted cancer, 404 non-oncology, and 64 chemotherapy compounds were identified for HNSCC. Top classes of mechanism of action amongst targeted cancer compounds included PI3K/AKT/MTOR, EGFR, and HDAC inhibitors. We have shortlisted 36 compounds with enriched killing activities for repurposing in HNSCC. The integrative analysis confirmed that the average expression of EGFR ligands (AREG, EREG, HBEGF, TGFA, and EPGN) is associated with osimertinib sensitivity. Novel putative biomarkers of response including those involved in immune signalling and cell cycle were found to be associated with sensitivity and resistance to MEK inhibitors respectively. We have also developed an RShiny webpage facilitating interactive visualization to fuel further hypothesis generation for drug repurposing in HNSCC. Our study provides a rich reference database of HNSCC drug sensitivity profiles, affording an opportunity to explore potential biomarkers of response in prioritized drug candidates. Our approach could also reveal insights for drug repurposing in other cancers.
  3. Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al.
    Elife, 2020 09 29;9.
    PMID: 32990596 DOI: 10.7554/eLife.57761
    New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favorable response toward immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.
  4. Chai AWY, Yee SM, Lee HM, Abdul Aziz N, Yee PS, Marzuki M, et al.
    Cancer Res Commun, 2024 Mar 04;4(3):645-659.
    PMID: 38358347 DOI: 10.1158/2767-9764.CRC-23-0341
    Nasopharyngeal carcinoma (NPC), a cancer that is etiologically associated with the Epstein-Barr virus (EBV), is endemic in Southern China and Southeast Asia. The scarcity of representative NPC cell lines owing to the frequent loss of EBV episomes following prolonged propagation and compromised authenticity of previous models underscores the critical need for new EBV-positive NPC models. Herein, we describe the establishment of a new EBV-positive NPC cell line, designated NPC268 from a primary non-keratinizing, differentiated NPC tissue. NPC268 can undergo productive lytic reactivation of EBV and is highly tumorigenic in immunodeficient mice. Whole-genome sequencing revealed close similarities with the tissue of origin, including large chromosomal rearrangements, while whole-genome bisulfite sequencing and RNA sequencing demonstrated a hypomethylated genome and enrichment in immune-related pathways, respectively. Drug screening of NPC268 together with six other NPC cell lines using 339 compounds, representing the largest high-throughput drug testing in NPC, revealed biomarkers associated with specific drug classes. NPC268 represents the first and only available EBV-positive non-keratinizing differentiated NPC model, and extensive genomic, methylomic, transcriptomic, and drug response data should facilitate research in EBV and NPC, where current models are limited.

    SIGNIFICANCE: NPC268 is the first and only EBV-positive cell line derived from a primary non-keratinizing, differentiated nasopharyngeal carcinoma, an understudied but important subtype in Southeast Asian countries. This model adds to the limited number of authentic EBV-positive lines globally that will facilitate mechanistic studies and drug development for NPC.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links