Modifications of polymeric membranes are necessary to improve the membrane characteristics. The composite membrane of Poly(vinylidene fluoride)_Microcrystalline cellulose (PVDF_MCC) was prepared using dimethylacetamide/lithium chloride (DMAc/LiCl) as co-solvent to dissolve the MCC in the casting solution. The prepared membrane was characterized by using the FTIR, SEM, contact angle, and the water permeates flux. The improvement of hydrophilicity and pore structure with the incorporation of MCC was observed which led to the increment of the water and permeate flux. Indication from the rheological study suggested that the casting solutions with MCC presented the influence on the composite membrane's pore structure as a significant viscosity increment was observed. This can be examined from the larger pore and elongated finger-like structure of the membrane morphology compared to the pristine membrane. The rejection rate of the protein increased from 85% to 97% after the incorporation of MCC in the PVDF membrane. The utilization of a low-cost and environmentally friendly additive that MCC has to offer helps to improve the antifouling properties of PVDF membranes for the efficient removal of BSA in water.
Emerging contaminants (ECs) originated from different agricultural, biological, chemical, and pharmaceutical sectors have been detected in our water sources for many years. Several technologies are employed to minimise EC content in the aqueous phase, including solvent extraction processes, but there is not a solution commonly accepted yet. One of the studied alternatives is based on separation processes of emulsion liquid membrane (ELM) that benefit low solvent inventory and energy needs. However, a better understanding of the process and factors influencing the operating conditions and the emulsion stability of the extraction/stripping process is crucial to enhancing ELM's performance. This article aims to describe the applications of this technique for the EC removal and to comprehensively review the ELM properties and characteristics, phase compositions, and process parameters.